Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack

Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically pr...

Full description

Bibliographic Details
Main Authors: Shi-Bing Qian, Wen-Peng Zhang, Wen-Jun Liu, Shi-Jin Ding
Format: Article
Language:English
Published: AIP Publishing LLC 2015-12-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4937422
id doaj-art-7acc24cda4a8459b99e4a39c0a5eb3bd
recordtype oai_dc
spelling doaj-art-7acc24cda4a8459b99e4a39c0a5eb3bd2018-09-02T13:24:08ZengAIP Publishing LLCAIP Advances2158-32262015-12-01512127203127203-810.1063/1.4937422007512ADVElectrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stackShi-Bing Qian0Wen-Peng Zhang1Wen-Jun Liu2Shi-Jin Ding3State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaState Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, ChinaAmorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack under a maximal processing temperature of 300 oC. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 103 P/E cycles, and a memory window of 1.1 V was retained after 105 s retention time.http://dx.doi.org/10.1063/1.4937422
institution Open Data Bank
collection Open Access Journals
building Directory of Open Access Journals
language English
format Article
author Shi-Bing Qian
Wen-Peng Zhang
Wen-Jun Liu
Shi-Jin Ding
spellingShingle Shi-Bing Qian
Wen-Peng Zhang
Wen-Jun Liu
Shi-Jin Ding
Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
AIP Advances
author_facet Shi-Bing Qian
Wen-Peng Zhang
Wen-Jun Liu
Shi-Jin Ding
author_sort Shi-Bing Qian
title Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
title_short Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
title_full Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
title_fullStr Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
title_full_unstemmed Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack
title_sort electrically programmable-erasable in-ga-zn-o thin-film transistor memory with atomic-layer-deposited al2o3/pt nanocrystals/al2o3 gate stack
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2015-12-01
description Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack under a maximal processing temperature of 300 oC. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 103 P/E cycles, and a memory window of 1.1 V was retained after 105 s retention time.
url http://dx.doi.org/10.1063/1.4937422
_version_ 1612641433687162880