Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation
Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-r...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Nature Pub. Group
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086683/ |
Summary: | Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary
responses, though it may be counterbalanced by potential for detrimental disruption of the
recipient genomic background. We examine the extent and impact of recent introgression of a
strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of
two exceptionally large genomic islands of divergence separating the Anopheles
gambiae species pair. Here we show that transfer of the Vgsc mutation results
in homogenization of the entire genomic island region (~1.5% of the genome) between
species. Despite this massive disruption, introgression is clearly adaptive with a dramatic
rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive
isolation between species. Our results show (1) how resilience of genomes to massive
introgression can permit rapid adaptive response to anthropogenic selection and (2) that
even extreme prominence of genomic islands of divergence can be an unreliable indicator of
importance in speciation. |
---|