ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin

The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain– associated protein-1), which binds to the β 1 integrin cytoplasmic domain. The interaction between ICAP-1 and β1 integrins is highly specific, as de...

Full description

Bibliographic Details
Main Authors: Chang, David D., Wong, Carol, Smith, Healy, Liu, Jenny
Format: Online
Language:English
Published: The Rockefeller University Press 1997
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2136751/
id pubmed-2136751
recordtype oai_dc
spelling pubmed-21367512008-05-01 ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin Chang, David D. Wong, Carol Smith, Healy Liu, Jenny Article The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain– associated protein-1), which binds to the β 1 integrin cytoplasmic domain. The interaction between ICAP-1 and β1 integrins is highly specific, as demonstrated by the lack of interaction between ICAP-1 and the cytoplasmic domains of other β integrins, and requires a conserved and functionally important NPXY sequence motif found in the COOH-terminal region of the β1 integrin cytoplasmic domain. Mutational studies reveal that Asn and Tyr of the NPXY motif and a Val residue located NH2-terminal to this motif are critical for the ICAP-1 binding. Two isoforms of ICAP-1, a 200–amino acid protein (ICAP-1α) and a shorter 150–amino acid protein (ICAP-1β), derived from alternatively spliced mRNA, are expressed in most cells. ICAP-1α is a phosphoprotein and the extent of its phosphorylation is regulated by the cell–matrix interaction. First, an enhancement of ICAP-1α phosphorylation is observed when cells were plated on fibronectin-coated but not on nonspecific poly-l-lysine–coated surface. Second, the expression of a constitutively activated RhoA protein that disrupts the cell–matrix interaction results in dephosphorylation of ICAP-1α. The regulation of ICAP-1α phosphorylation by the cell–matrix interaction suggests an important role of ICAP-1 during integrin-dependent cell adhesion. The Rockefeller University Press 1997-09-08 /pmc/articles/PMC2136751/ /pubmed/9281591 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Chang, David D.
Wong, Carol
Smith, Healy
Liu, Jenny
spellingShingle Chang, David D.
Wong, Carol
Smith, Healy
Liu, Jenny
ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
author_facet Chang, David D.
Wong, Carol
Smith, Healy
Liu, Jenny
author_sort Chang, David D.
title ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
title_short ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
title_full ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
title_fullStr ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
title_full_unstemmed ICAP-1, a Novel β1 Integrin Cytoplasmic Domain–associated Protein, Binds to a Conserved and Functionally Important NPXY Sequence Motif of β1 Integrin
title_sort icap-1, a novel β1 integrin cytoplasmic domain–associated protein, binds to a conserved and functionally important npxy sequence motif of β1 integrin
description The cytoplasmic domains of integrins are essential for cell adhesion. We report identification of a novel protein, ICAP-1 (integrin cytoplasmic domain– associated protein-1), which binds to the β 1 integrin cytoplasmic domain. The interaction between ICAP-1 and β1 integrins is highly specific, as demonstrated by the lack of interaction between ICAP-1 and the cytoplasmic domains of other β integrins, and requires a conserved and functionally important NPXY sequence motif found in the COOH-terminal region of the β1 integrin cytoplasmic domain. Mutational studies reveal that Asn and Tyr of the NPXY motif and a Val residue located NH2-terminal to this motif are critical for the ICAP-1 binding. Two isoforms of ICAP-1, a 200–amino acid protein (ICAP-1α) and a shorter 150–amino acid protein (ICAP-1β), derived from alternatively spliced mRNA, are expressed in most cells. ICAP-1α is a phosphoprotein and the extent of its phosphorylation is regulated by the cell–matrix interaction. First, an enhancement of ICAP-1α phosphorylation is observed when cells were plated on fibronectin-coated but not on nonspecific poly-l-lysine–coated surface. Second, the expression of a constitutively activated RhoA protein that disrupts the cell–matrix interaction results in dephosphorylation of ICAP-1α. The regulation of ICAP-1α phosphorylation by the cell–matrix interaction suggests an important role of ICAP-1 during integrin-dependent cell adhesion.
publisher The Rockefeller University Press
publishDate 1997
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2136751/
_version_ 1611420216758108160