Summary: | This research covers an endeavor by the author on the usage of automated vision and navigation framework; the research is conducted by utilizing a Kinect sensor requiring minimal effort framework for exploration purposes in the zone of robot route. For this framework, GMapping (a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data) parameters have been optimized to improve the accuracy of the map generation and the laser scan. With the use of Robot Operating System (ROS), the open source GMapping bundle was utilized as a premise for a map era and Simultaneous Localization and Mapping (SLAM). Out of the many different map generation techniques, the tele-operation used is interactive marker, which controls the TurtleBot 2 movements via RVIZ (3D visualization tool for ROS). Test results completed with the multipurpose robot in a counterfeit and regular environment represents the preferences of the proposed strategy. From experiments, it is found that Kinect sensor produces a more accurate map compared to non-filtered laser range finder data, which is excellent since the price of a Kinect sensor is much cheaper than a laser range finder. An expansion of experimental results was likewise done to test the performance of the portable robot frontier exploring in an obscure environment while performing SLAM alongside the proposed technique. © 2015 IEEE.
|