Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS)

Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many bio...

Full description

Bibliographic Details
Main Authors: Holman, Stephen W., Hammond, Dean E., Simpson, Deborah M., Waters, John, Hurst, Jane L., Beynon, Robert J.
Format: Online
Language:English
Published: The Royal Society 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031629/
Description
Summary:Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many biological processes. In this study, the more widely used approach of non-targeted precursor ion signal intensity (MS1) quantification is compared with selected reaction monitoring (SRM), a data acquisition strategy that records data for specific peptides, to determine if improved quantitative data would be obtained using a targeted quantification approach. Using mouse liver as a model system, turnover measurement of four tricarboxylic acid cycle proteins was performed using both MS1 and SRM quantification strategies. SRM outperformed MS1 in terms of sensitivity and selectivity of measurement, allowing more confident determination of protein turnover rates. SRM data are acquired using cheaper and more widely available tandem quadrupole mass spectrometers, making the approach accessible to a larger number of researchers than MS1 quantification, which is best performed on high mass resolution instruments. SRM acquisition is ideally suited to focused studies where the turnover of tens of proteins is measured, making it applicable in determining the dynamics of proteins complexes and complete metabolic pathways.