Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures

The plant phenol trans-resveratrol, which is mainly found in grape, displays a wide range of biological effects. A cell suspension culture was developed from calli of grape leaves of Vitis vinifera cv. Negramaro in order to study the bioproduction of resveratrol. The effects of a number of secondary...

Full description

Bibliographic Details
Main Authors: Taurino, Marco, Ingrosso, Ilaria, D’amico, Leone, De Domenico, Stefania, Nicoletti, Isabella, Corradini, Danilo, Santino, Angelo, Giovinazzo, Giovanna
Format: Online
Language:English
Published: Springer International Publishing 2015
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320690/
Description
Summary:The plant phenol trans-resveratrol, which is mainly found in grape, displays a wide range of biological effects. A cell suspension culture was developed from calli of grape leaves of Vitis vinifera cv. Negramaro in order to study the bioproduction of resveratrol. The effects of a number of secondary plant metabolism elicitors, namely chitosan, methyl jasmonate, jasmonic acid, coronatine, and 12-oxo-phytodienoic acid, were tested on this cell suspension culture. The identification and quantification of stilbenes was achieved with high performance liquid chromatography, with both spectrophotometric and mass spectrometric detection. Of the tested elicitors, methyl jasmonate was the most effective in inducing the biosynthesis of approximately 4 mg g−1 dry weight (about 60 mg L−1) of resveratrol. Conversely, 12-oxo-phytodienoic acid, jasmonic acid, and coronatine were able to trigger the synthesis of approximately 20 mg g−1 dry weight (200–210 mg L−1) of viniferins. Taken together, our results show for the first time different modulatory effects of closely-related jasmonates on stilbene biosynthesis.