A Multipoint Correction Method for Environmental Temperature Changes in Airborne Double-Antenna Microwave Radiometers

This manuscript describes a new type Ka-band airborne double-antenna microwave radiometer (ADAMR) designed for detecting atmospheric supercooled water content (SCWC). The source of the measurement error is investigated by analyzing the model of the system gain factor and the principle of the auto-ga...

Full description

Bibliographic Details
Main Authors: Sun, Jian, Zhao, Kai, Jiang, Tao
Format: Online
Language:English
Published: Molecular Diversity Preservation International (MDPI) 2014
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063080/
Description
Summary:This manuscript describes a new type Ka-band airborne double-antenna microwave radiometer (ADAMR) designed for detecting atmospheric supercooled water content (SCWC). The source of the measurement error is investigated by analyzing the model of the system gain factor and the principle of the auto-gain compensative technique utilized in the radiometer. Then, a multipoint temperature correction method based on the two-point calibration method for this radiometer is proposed. The multipoint temperature correction method can eliminate the effect of changes in environmental temperature by establishing the relationship between the measurement error and the physical temperatures of the temperature-sensitive units. In order to demonstrate the feasibility of the correction method, the long-term outdoor temperature experiment is carried out. The multipoint temperature correction equations are obtained by using the least square regression method. The comparison results show that the measuring accuracy of the radiometer can be increased more effectively by using the multipoint temperature correction method.