Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent

Peritoneal dialysis effluent (PDE) potentially carries an archive of peptides relevant to pathological processes in abdominal and surrounding tissues. Magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is one such approach that offers a unique tool for pr...

Full description

Bibliographic Details
Main Authors: Guo, Na, Wen, Qiong, Li, Zhi-Jian, Xu, Ri-Cong, Peng, Fen-Fen, Yu, Xue-Qing
Format: Online
Language:English
Published: Molecular Diversity Preservation International (MDPI) 2014
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907861/
id pubmed-3907861
recordtype oai_dc
spelling pubmed-39078612014-01-31 Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent Guo, Na Wen, Qiong Li, Zhi-Jian Xu, Ri-Cong Peng, Fen-Fen Yu, Xue-Qing Article Peritoneal dialysis effluent (PDE) potentially carries an archive of peptides relevant to pathological processes in abdominal and surrounding tissues. Magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is one such approach that offers a unique tool for profiling of peptides, but this approach has not been used in the PDE analysis. In this study, we developed a strategy for screening PDE proteins <15 kDa and applied this technique to identify potential biomarkers for peritonitis. We examined four kinds of magnetic beads, including a carbon series (C3, C8), weak cation exchange (WCX) and immobilized metal-affinity chromatography (IMAC-Cu) beads. Samples processed with IMAC-Cu magnetic beads consistently showed more MS signals across all beads within the measured mass range. Moreover, there was no difference in the number and morphology of MS signals between concentrated and unconcentrated samples. The PDE peptidome pattern, based on a panel of 15 peaks, accurately recognized peritonitis PD patients from peritonitis-free patients with sensitivity of 90.5% and specificity of 94.7% respectively. Therefore, IMAC-Cu magnetic beads and unconcentrated samples can be used as a fast and cost-effective approach for sample preparation prior to more in-depth discovery of predictive biomarkers of disease in patients on dialysis. Molecular Diversity Preservation International (MDPI) 2014-01-16 /pmc/articles/PMC3907861/ /pubmed/24441570 http://dx.doi.org/10.3390/ijms15011162 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Guo, Na
Wen, Qiong
Li, Zhi-Jian
Xu, Ri-Cong
Peng, Fen-Fen
Yu, Xue-Qing
spellingShingle Guo, Na
Wen, Qiong
Li, Zhi-Jian
Xu, Ri-Cong
Peng, Fen-Fen
Yu, Xue-Qing
Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
author_facet Guo, Na
Wen, Qiong
Li, Zhi-Jian
Xu, Ri-Cong
Peng, Fen-Fen
Yu, Xue-Qing
author_sort Guo, Na
title Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
title_short Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
title_full Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
title_fullStr Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
title_full_unstemmed Optimization and Evaluation of Magnetic Bead Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI-TOF MS) for Proteins Profiling of Peritoneal Dialysis Effluent
title_sort optimization and evaluation of magnetic bead separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (maldi-tof ms) for proteins profiling of peritoneal dialysis effluent
description Peritoneal dialysis effluent (PDE) potentially carries an archive of peptides relevant to pathological processes in abdominal and surrounding tissues. Magnetic beads and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is one such approach that offers a unique tool for profiling of peptides, but this approach has not been used in the PDE analysis. In this study, we developed a strategy for screening PDE proteins <15 kDa and applied this technique to identify potential biomarkers for peritonitis. We examined four kinds of magnetic beads, including a carbon series (C3, C8), weak cation exchange (WCX) and immobilized metal-affinity chromatography (IMAC-Cu) beads. Samples processed with IMAC-Cu magnetic beads consistently showed more MS signals across all beads within the measured mass range. Moreover, there was no difference in the number and morphology of MS signals between concentrated and unconcentrated samples. The PDE peptidome pattern, based on a panel of 15 peaks, accurately recognized peritonitis PD patients from peritonitis-free patients with sensitivity of 90.5% and specificity of 94.7% respectively. Therefore, IMAC-Cu magnetic beads and unconcentrated samples can be used as a fast and cost-effective approach for sample preparation prior to more in-depth discovery of predictive biomarkers of disease in patients on dialysis.
publisher Molecular Diversity Preservation International (MDPI)
publishDate 2014
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907861/
_version_ 1612053183492784128