Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques

Focusing on the ‘worst-case scenario’, a modelling study was carried out to examine whether a low cost ventilation solution could provide basic comfort in a specific atrium-building design. This study combined dynamic thermal modelling (DTM) and computational fluid dynamics (CFD) in investigating...

Full description

Bibliographic Details
Main Authors: Fan Wang, Fan Wang, Abdullah, Abd Halid
Format: Article
Language:English
Published: Oxford University Press 2011
Subjects:
Online Access:http://eprints.uthm.edu.my/7900/
http://eprints.uthm.edu.my/7900/1/J5980_a5881eb2425234e4baac339e48e2b745.pdf
_version_ 1848889239243063296
author Fan Wang, Fan Wang
Abdullah, Abd Halid
author_facet Fan Wang, Fan Wang
Abdullah, Abd Halid
author_sort Fan Wang, Fan Wang
building UTHM Institutional Repository
collection Online Access
description Focusing on the ‘worst-case scenario’, a modelling study was carried out to examine whether a low cost ventilation solution could provide basic comfort in a specific atrium-building design. This study combined dynamic thermal modelling (DTM) and computational fluid dynamics (CFD) in investigating how thermal conditions, namely the air movement and temperature distribution within an atrium responded to the side-lit form and other changes of design variables such as inlet to outlet opening area ratios and also the outlet’s arrangement. The predicted temperature distribution, airflow patterns and comfort indices would provide a better understanding how the design variables affect thermal condition and comfort within the atrium, particularly at the occupied areas under a low cost ventilation solution—pressurized ventilation. The simulation results revealed that sufficiently higher inlet to outlet opening area ratio (i.e. n . 1) could improve the thermal condition on the open corridors, the occupied areas, even on high levels; while with an equal inlet to outlet opening area ratio (i.e. n ¼ 1), changing the outlet’s arrangement (i.e. location and configuration) did not significantly affect thermal condition. The practical aspect of this study is 2-fold. First, the low cost ventilation solution using exhaust air from surrounding fully air-conditioned rooms could provide acceptable thermal comfort at the open corridors/walkways surrounding the atrium. Secondly, combining a DTM and CFD can be an effective tool to test various design options to achieve an optimal solution. The parametric presented here could be used in similar studies aiming at optimize environmental engineering solutions that balance comfort and cost.
first_indexed 2025-11-15T20:23:01Z
format Article
id uthm-7900
institution Universiti Tun Hussein Onn Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T20:23:01Z
publishDate 2011
publisher Oxford University Press
recordtype eprints
repository_type Digital Repository
spelling uthm-79002022-10-17T06:22:53Z http://eprints.uthm.edu.my/7900/ Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques Fan Wang, Fan Wang Abdullah, Abd Halid T Technology (General) Focusing on the ‘worst-case scenario’, a modelling study was carried out to examine whether a low cost ventilation solution could provide basic comfort in a specific atrium-building design. This study combined dynamic thermal modelling (DTM) and computational fluid dynamics (CFD) in investigating how thermal conditions, namely the air movement and temperature distribution within an atrium responded to the side-lit form and other changes of design variables such as inlet to outlet opening area ratios and also the outlet’s arrangement. The predicted temperature distribution, airflow patterns and comfort indices would provide a better understanding how the design variables affect thermal condition and comfort within the atrium, particularly at the occupied areas under a low cost ventilation solution—pressurized ventilation. The simulation results revealed that sufficiently higher inlet to outlet opening area ratio (i.e. n . 1) could improve the thermal condition on the open corridors, the occupied areas, even on high levels; while with an equal inlet to outlet opening area ratio (i.e. n ¼ 1), changing the outlet’s arrangement (i.e. location and configuration) did not significantly affect thermal condition. The practical aspect of this study is 2-fold. First, the low cost ventilation solution using exhaust air from surrounding fully air-conditioned rooms could provide acceptable thermal comfort at the open corridors/walkways surrounding the atrium. Secondly, combining a DTM and CFD can be an effective tool to test various design options to achieve an optimal solution. The parametric presented here could be used in similar studies aiming at optimize environmental engineering solutions that balance comfort and cost. Oxford University Press 2011 Article PeerReviewed text en http://eprints.uthm.edu.my/7900/1/J5980_a5881eb2425234e4baac339e48e2b745.pdf Fan Wang, Fan Wang and Abdullah, Abd Halid (2011) Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques. International Journal of Low-Carbon Technologies, 6. pp. 171-186. https://doi.org/10.1093/ijlct/ctr005
spellingShingle T Technology (General)
Fan Wang, Fan Wang
Abdullah, Abd Halid
Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title_full Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title_fullStr Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title_full_unstemmed Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title_short Investigating thermal conditions in a tropic atrium employing CFD and DTM techniques
title_sort investigating thermal conditions in a tropic atrium employing cfd and dtm techniques
topic T Technology (General)
url http://eprints.uthm.edu.my/7900/
http://eprints.uthm.edu.my/7900/
http://eprints.uthm.edu.my/7900/1/J5980_a5881eb2425234e4baac339e48e2b745.pdf