Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction
The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a si...
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
Nature Publishing Group
2017
|
| Online Access: | https://eprints.nottingham.ac.uk/49144/ |
| _version_ | 1848797932299485184 |
|---|---|
| author | Hu, Qin Sun, Xue-Zhong Parmenter, Christopher D.J. Fay, Michael W. Smith, Emily F. Rance, Graham A. He, Yinfeng Zhang, Fan Liu, Yaan Irvine, Derek Tuck, Christopher Hague, Richard J.M. Wildman, Ricky D. |
| author_facet | Hu, Qin Sun, Xue-Zhong Parmenter, Christopher D.J. Fay, Michael W. Smith, Emily F. Rance, Graham A. He, Yinfeng Zhang, Fan Liu, Yaan Irvine, Derek Tuck, Christopher Hague, Richard J.M. Wildman, Ricky D. |
| author_sort | Hu, Qin |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4∙3H2O) is reported, where the gold salt concentration is adjustable on demand from zero to 20wt%. For the frst-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5wt% of DETC was required to promote both polymerisation and photoreduction of up to 20wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4±1.4nm for long axis / 3.7±0.9nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors. |
| first_indexed | 2025-11-14T20:11:44Z |
| format | Article |
| id | nottingham-49144 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T20:11:44Z |
| publishDate | 2017 |
| publisher | Nature Publishing Group |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-491442020-05-04T19:21:47Z https://eprints.nottingham.ac.uk/49144/ Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction Hu, Qin Sun, Xue-Zhong Parmenter, Christopher D.J. Fay, Michael W. Smith, Emily F. Rance, Graham A. He, Yinfeng Zhang, Fan Liu, Yaan Irvine, Derek Tuck, Christopher Hague, Richard J.M. Wildman, Ricky D. The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4∙3H2O) is reported, where the gold salt concentration is adjustable on demand from zero to 20wt%. For the frst-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5wt% of DETC was required to promote both polymerisation and photoreduction of up to 20wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4±1.4nm for long axis / 3.7±0.9nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors. Nature Publishing Group 2017-12-07 Article PeerReviewed Hu, Qin, Sun, Xue-Zhong, Parmenter, Christopher D.J., Fay, Michael W., Smith, Emily F., Rance, Graham A., He, Yinfeng, Zhang, Fan, Liu, Yaan, Irvine, Derek, Tuck, Christopher, Hague, Richard J.M. and Wildman, Ricky D. (2017) Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 7 . 17150/1-17150/9. ISSN 2045-2322 https://www.nature.com/articles/s41598-017-17391-1 doi:10.1038/s41598-017-17391-1 doi:10.1038/s41598-017-17391-1 |
| spellingShingle | Hu, Qin Sun, Xue-Zhong Parmenter, Christopher D.J. Fay, Michael W. Smith, Emily F. Rance, Graham A. He, Yinfeng Zhang, Fan Liu, Yaan Irvine, Derek Tuck, Christopher Hague, Richard J.M. Wildman, Ricky D. Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title | Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title_full | Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title_fullStr | Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title_full_unstemmed | Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title_short | Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| title_sort | additive manufacture of complex 3d au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction |
| url | https://eprints.nottingham.ac.uk/49144/ https://eprints.nottingham.ac.uk/49144/ https://eprints.nottingham.ac.uk/49144/ |