Simulations of Cold Electroweak Baryogenesis: finding the optimal quench time
We revisit the numerical computation of the baryon asymmetry from Cold Electroweak Baryogenesis given the physical Higgs mass. We investigate the dependence of the asymmetry on the speed at which electroweak symmetry breaking takes place. The maximum asymmetry does not occur for arbitrarily fast qu...
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Published: |
Springer
2017
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/44421/ |
| Summary: | We revisit the numerical computation of the baryon asymmetry from Cold
Electroweak Baryogenesis given the physical Higgs mass. We investigate the dependence of the asymmetry on the speed at which electroweak symmetry breaking takes place. The maximum asymmetry does not occur for arbitrarily fast quenches, but at quench times of about τq ≃ 16m_H^−1, with no asymmetry created for quenches slower than τq > 30m_H^−1. Curiously, we also find that the overall sign of the asymmetry depends on the quench time. |
|---|