Prospects of charged-oscillator quantum-state generation with Rydberg atoms
We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon tran...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Published: |
American Physical Society
2016
|
| Online Access: | https://eprints.nottingham.ac.uk/39524/ |
| _version_ | 1848795857498931200 |
|---|---|
| author | Stevenson, Robin Minář, Jiří Hofferberth, Sebastian Lesanovsky, Igor |
| author_facet | Stevenson, Robin Minář, Jiří Hofferberth, Sebastian Lesanovsky, Igor |
| author_sort | Stevenson, Robin |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic objects. We show that these features survive thermal coupling of the oscillator with the environment.We perform a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we comment on ways to circumvent the present limitations. |
| first_indexed | 2025-11-14T19:38:45Z |
| format | Article |
| id | nottingham-39524 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:38:45Z |
| publishDate | 2016 |
| publisher | American Physical Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-395242020-05-04T18:17:24Z https://eprints.nottingham.ac.uk/39524/ Prospects of charged-oscillator quantum-state generation with Rydberg atoms Stevenson, Robin Minář, Jiří Hofferberth, Sebastian Lesanovsky, Igor We explore the possibility of engineering quantum states of a charged mechanical oscillator by coupling it to a stream of atoms in superpositions of high-lying Rydberg states. Our scheme relies on the driving of a two-phonon resonance within the oscillator by coupling it to an atomic two-photon transition. This approach effectuates a controllable open system dynamics on the oscillator that in principle permits versatile dissipative creation of squeezed and other nonclassical states which are central to sensing applications or for studies of fundamental questions concerning the boundary between classical and quantum-mechanical descriptions of macroscopic objects. We show that these features survive thermal coupling of the oscillator with the environment.We perform a detailed feasibility study finding that current state-of-the-art parameters result in atom-oscillator couplings which are too weak to efficiently implement the proposed oscillator state preparation protocol. Finally, we comment on ways to circumvent the present limitations. American Physical Society 2016-10-12 Article PeerReviewed Stevenson, Robin, Minář, Jiří, Hofferberth, Sebastian and Lesanovsky, Igor (2016) Prospects of charged-oscillator quantum-state generation with Rydberg atoms. Physical Review A, 94 . 043813/1-043813/11. ISSN 2469-9934 http://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.043813 doi:10.1103/PhysRevA.94.043813 doi:10.1103/PhysRevA.94.043813 |
| spellingShingle | Stevenson, Robin Minář, Jiří Hofferberth, Sebastian Lesanovsky, Igor Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title | Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title_full | Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title_fullStr | Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title_full_unstemmed | Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title_short | Prospects of charged-oscillator quantum-state generation with Rydberg atoms |
| title_sort | prospects of charged-oscillator quantum-state generation with rydberg atoms |
| url | https://eprints.nottingham.ac.uk/39524/ https://eprints.nottingham.ac.uk/39524/ https://eprints.nottingham.ac.uk/39524/ |