Characterization of p-GaN1−xAsx/n-GaN PN junction diodes
The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−xAsx/n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5×1019 cm−3 is achieved which allows a specific contact resistance of 1.3×10−4 Ω cm2. An increased gallium beam equivalent p...
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
IOP Publishing
2016
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/34804/ |
| _version_ | 1848794939267219456 |
|---|---|
| author | Qian, H. Lee, K.B. Vajargah, S.Hosseini Novikov, S.V. Guiney, I. Zhang, S. Zaidi, Z.H. Jiang, S. Wallis, D.J. Foxon, C.T. Humphreys, C.J. Houston, P.A. |
| author_facet | Qian, H. Lee, K.B. Vajargah, S.Hosseini Novikov, S.V. Guiney, I. Zhang, S. Zaidi, Z.H. Jiang, S. Wallis, D.J. Foxon, C.T. Humphreys, C.J. Houston, P.A. |
| author_sort | Qian, H. |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−xAsx/n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5×1019 cm−3 is achieved which allows a specific contact resistance of 1.3×10−4 Ω cm2. An increased gallium beam equivalent pressure during growth produces reduced resistivity but can result in the formation of a polycrystalline structure. The conduction mechanism is found to be influenced by the crystallinity of the structure. Temperature dependent current voltage characteristics at low forward bias (<0.35 V) show that conduction is recombination dominated in the amorphous structure whereas a transition from tunneling to recombination is observed in the polycrystalline structure. At higher bias, the currents are space charge limited due to the low carrier density in the n-type region. In reverse bias, tunneling current dominates at low bias(<0.3 V) and recombination current becomes dominant at higher reverse bias. |
| first_indexed | 2025-11-14T19:24:09Z |
| format | Article |
| id | nottingham-34804 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:24:09Z |
| publishDate | 2016 |
| publisher | IOP Publishing |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-348042024-08-15T15:19:28Z https://eprints.nottingham.ac.uk/34804/ Characterization of p-GaN1−xAsx/n-GaN PN junction diodes Qian, H. Lee, K.B. Vajargah, S.Hosseini Novikov, S.V. Guiney, I. Zhang, S. Zaidi, Z.H. Jiang, S. Wallis, D.J. Foxon, C.T. Humphreys, C.J. Houston, P.A. The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−xAsx/n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5×1019 cm−3 is achieved which allows a specific contact resistance of 1.3×10−4 Ω cm2. An increased gallium beam equivalent pressure during growth produces reduced resistivity but can result in the formation of a polycrystalline structure. The conduction mechanism is found to be influenced by the crystallinity of the structure. Temperature dependent current voltage characteristics at low forward bias (<0.35 V) show that conduction is recombination dominated in the amorphous structure whereas a transition from tunneling to recombination is observed in the polycrystalline structure. At higher bias, the currents are space charge limited due to the low carrier density in the n-type region. In reverse bias, tunneling current dominates at low bias(<0.3 V) and recombination current becomes dominant at higher reverse bias. IOP Publishing 2016-06-03 Article PeerReviewed Qian, H., Lee, K.B., Vajargah, S.Hosseini, Novikov, S.V., Guiney, I., Zhang, S., Zaidi, Z.H., Jiang, S., Wallis, D.J., Foxon, C.T., Humphreys, C.J. and Houston, P.A. (2016) Characterization of p-GaN1−xAsx/n-GaN PN junction diodes. Semiconductor Science and Technology, 31 (6). 065020. ISSN 0268-1242 GaN PN diode conduction mechanism p-type doping amorphous GaNAs http://iopscience.iop.org/article/10.1088/0268-1242/31/6/065020/meta doi:10.1088/0268-1242/31/6/065020 doi:10.1088/0268-1242/31/6/065020 |
| spellingShingle | GaN PN diode conduction mechanism p-type doping amorphous GaNAs Qian, H. Lee, K.B. Vajargah, S.Hosseini Novikov, S.V. Guiney, I. Zhang, S. Zaidi, Z.H. Jiang, S. Wallis, D.J. Foxon, C.T. Humphreys, C.J. Houston, P.A. Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title | Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title_full | Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title_fullStr | Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title_full_unstemmed | Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title_short | Characterization of p-GaN1−xAsx/n-GaN PN junction diodes |
| title_sort | characterization of p-gan1−xasx/n-gan pn junction diodes |
| topic | GaN PN diode conduction mechanism p-type doping amorphous GaNAs |
| url | https://eprints.nottingham.ac.uk/34804/ https://eprints.nottingham.ac.uk/34804/ https://eprints.nottingham.ac.uk/34804/ |