Characterization of p-GaN1−xAsx/n-GaN PN junction diodes

The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−xAsx/n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5×1019 cm−3 is achieved which allows a specific contact resistance of 1.3×10−4 Ω cm2. An increased gallium beam equivalent p...

Full description

Bibliographic Details
Main Authors: Qian, H., Lee, K.B., Vajargah, S.Hosseini, Novikov, S.V., Guiney, I., Zhang, S., Zaidi, Z.H., Jiang, S., Wallis, D.J., Foxon, C.T., Humphreys, C.J., Houston, P.A.
Format: Article
Published: IOP Publishing 2016
Subjects:
Online Access:https://eprints.nottingham.ac.uk/34804/
Description
Summary:The structural properties and electrical conduction mechanisms of p-type amorphous GaN1−xAsx/n-type crystalline GaN PN junction diodes are presented. A hole concentration of 8.5×1019 cm−3 is achieved which allows a specific contact resistance of 1.3×10−4 Ω cm2. An increased gallium beam equivalent pressure during growth produces reduced resistivity but can result in the formation of a polycrystalline structure. The conduction mechanism is found to be influenced by the crystallinity of the structure. Temperature dependent current voltage characteristics at low forward bias (<0.35 V) show that conduction is recombination dominated in the amorphous structure whereas a transition from tunneling to recombination is observed in the polycrystalline structure. At higher bias, the currents are space charge limited due to the low carrier density in the n-type region. In reverse bias, tunneling current dominates at low bias(<0.3 V) and recombination current becomes dominant at higher reverse bias.