5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development

5-hydroxymethyl-cytosine (5-hmc) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (Esc) derived from mammalian blastocysts. Recent observations imply that both 5-hmc and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-...

Full description

Bibliographic Details
Main Authors: Almeida, Rimple D., Loose, Matthew, Sottile, Virginie, Matsa, Elena, Denning, Chris, Young, Lorraine, Johnson, Andrew D., Gering, Martin, Ruzov, Alexey
Format: Article
Published: Landes Bioscience 2012
Online Access:https://eprints.nottingham.ac.uk/2698/
Description
Summary:5-hydroxymethyl-cytosine (5-hmc) is a cytosine modification that is relatively abundant in mammalian pre-implantation embryos and embryonic stem cells (Esc) derived from mammalian blastocysts. Recent observations imply that both 5-hmc and Tet1/2/3 proteins, catalyzing the conversion of 5-methyl-cytosine to 5-hmc, may play an important role in self renewal and differentiation of Escs. here we assessed the distribution of 5-hmc in zebrafish and chick embryos and found that, unlike in mammals, 5-hmc is immunochemically undetectable in these systems before the onset of organogenesis. In addition, Tet1/2/3 transcripts are either low or undetectable at corresponding stages of zebrafish development. however, 5-hmc is enriched in later zebrafish and chick embryos and exhibits tissue-specific distribution in adult zebrafish. Our findings show that 5-hmc enrichment of non-committed cells is not a universal feature of vertebrate development and give insights both into evolution of embryonic pluripotency and the potential role of 5-hmc in its regulation.