Design and synthesis of protein arginine methyltransferase inhibitors

Biological methylation is defined as the transfer of a methyl group from S-adenosyl-L-methionine(SAM) to one of a wide range of potential acceptors such as DNA, RNA, protein, hormones and neurotransmitters. Protein arginine methylation is a common post-translational modification facilitated by prote...

Full description

Bibliographic Details
Main Author: Hong, Wei
Format: Thesis (University of Nottingham only)
Language:English
Published: 2010
Online Access:https://eprints.nottingham.ac.uk/12835/
_version_ 1848791589367840768
author Hong, Wei
author_facet Hong, Wei
author_sort Hong, Wei
building Nottingham Research Data Repository
collection Online Access
description Biological methylation is defined as the transfer of a methyl group from S-adenosyl-L-methionine(SAM) to one of a wide range of potential acceptors such as DNA, RNA, protein, hormones and neurotransmitters. Protein arginine methylation is a common post-translational modification facilitated by protein arginine methyltransferases(e.g. PRMTI). The roles of these enzymes in vivo are currently poorly understood. The focus of the project is design and synthesis of PRMT inhibitors with the ultimate goal of evaluating their activities in cells. Preliminary work toward the synthesis of S-adenosyl-trifluoromethyl-L-homocystein and adenosyl 5'-[2-(tert-butoxycarbonylamino)ethyl-trifluoro methyl] thiophenium is described. The ternary crystal structure of PRMTI in complex with S-adenoSyl-L-homocystein(eSAH) and an arginine containing peptide (PBD IOR8) was used to design a series of potential bisubstrate inhibitors of PRMTI. The prototypical SAM analogues bearing guanidine group were sought to replace the reactive sulfonium centre with nitrogen. Analogue synthesis proceeded via successive reductive arnination of Y-arnino-Y-deoxyadenosine and deprotection in good overall yields. An alkyne SAM analogue, 5'-[(S-3-amino-3-carboxypropyl)-propargylaminol-5'-deoxyadenosine was prepared, which underwent efficient Cu(1) catalysed Huisgen reaction to yield a triazole derived SAM analogue 5'-[(S-3-amino-3-carboxypropyl)-[I-(2-guanidinoethyl)-IH-1,2,3-triazol-4-yl]methyl-amino]-5'-deoxyadenosine. Preliminary biological evaluation of the compounds by collaborators Professor Steve Ward and Dr Richard Parry at the University of Bath, confirmed that 5'-[(S-3-amino-3-carboxypropyl)- 3-guanidinopropyl-amino]-5'-deoxyadenosine and 5-[(S-3-amino-3-carboxypropyl)-5-guanidinopentyl-amino]-5'-deoxyadenosine are potent inhibitors of PRMTI but not the lysine methyltransferase SET7. A related N-6 modified SAM analogue 5'-[(S-3-amino-3-carboxypropyl)-3-guanidinopropylamino]-5'-deoxy-N6-(lI-azido-3,6,9-trioxaundecane)-amino adenosine bearing an azide tether was developed with the aim of allowing facile introduction of biotin or fluorescent dyes, using either Staudinger ligation, or Cu(1) catalysed Huisgen reaction to provide compounds that can be used for affinity purification of the target protein or study of its localisation in cells respectively. Finally, progress toward a novel, rapid and enantioselective synthesis of the natural product (+)-sinefungin is reported. Key dihydropyridazine intermediates were generated from adenosyl 5'-propaldehyde, commercially available azodicarboxylate derivatives and ester substituted vinyltriphenylphosphonium salt by successful extension of methodology first reported by Ley and co-workers. Deprotection and ring opening of clihydropyridazine compounds was attempted, and unfortunately we were not able to generate (+)-sinefungin, although it is hoped that this route can be developed to achieve this in the future.
first_indexed 2025-11-14T18:30:55Z
format Thesis (University of Nottingham only)
id nottingham-12835
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T18:30:55Z
publishDate 2010
recordtype eprints
repository_type Digital Repository
spelling nottingham-128352025-02-28T11:21:34Z https://eprints.nottingham.ac.uk/12835/ Design and synthesis of protein arginine methyltransferase inhibitors Hong, Wei Biological methylation is defined as the transfer of a methyl group from S-adenosyl-L-methionine(SAM) to one of a wide range of potential acceptors such as DNA, RNA, protein, hormones and neurotransmitters. Protein arginine methylation is a common post-translational modification facilitated by protein arginine methyltransferases(e.g. PRMTI). The roles of these enzymes in vivo are currently poorly understood. The focus of the project is design and synthesis of PRMT inhibitors with the ultimate goal of evaluating their activities in cells. Preliminary work toward the synthesis of S-adenosyl-trifluoromethyl-L-homocystein and adenosyl 5'-[2-(tert-butoxycarbonylamino)ethyl-trifluoro methyl] thiophenium is described. The ternary crystal structure of PRMTI in complex with S-adenoSyl-L-homocystein(eSAH) and an arginine containing peptide (PBD IOR8) was used to design a series of potential bisubstrate inhibitors of PRMTI. The prototypical SAM analogues bearing guanidine group were sought to replace the reactive sulfonium centre with nitrogen. Analogue synthesis proceeded via successive reductive arnination of Y-arnino-Y-deoxyadenosine and deprotection in good overall yields. An alkyne SAM analogue, 5'-[(S-3-amino-3-carboxypropyl)-propargylaminol-5'-deoxyadenosine was prepared, which underwent efficient Cu(1) catalysed Huisgen reaction to yield a triazole derived SAM analogue 5'-[(S-3-amino-3-carboxypropyl)-[I-(2-guanidinoethyl)-IH-1,2,3-triazol-4-yl]methyl-amino]-5'-deoxyadenosine. Preliminary biological evaluation of the compounds by collaborators Professor Steve Ward and Dr Richard Parry at the University of Bath, confirmed that 5'-[(S-3-amino-3-carboxypropyl)- 3-guanidinopropyl-amino]-5'-deoxyadenosine and 5-[(S-3-amino-3-carboxypropyl)-5-guanidinopentyl-amino]-5'-deoxyadenosine are potent inhibitors of PRMTI but not the lysine methyltransferase SET7. A related N-6 modified SAM analogue 5'-[(S-3-amino-3-carboxypropyl)-3-guanidinopropylamino]-5'-deoxy-N6-(lI-azido-3,6,9-trioxaundecane)-amino adenosine bearing an azide tether was developed with the aim of allowing facile introduction of biotin or fluorescent dyes, using either Staudinger ligation, or Cu(1) catalysed Huisgen reaction to provide compounds that can be used for affinity purification of the target protein or study of its localisation in cells respectively. Finally, progress toward a novel, rapid and enantioselective synthesis of the natural product (+)-sinefungin is reported. Key dihydropyridazine intermediates were generated from adenosyl 5'-propaldehyde, commercially available azodicarboxylate derivatives and ester substituted vinyltriphenylphosphonium salt by successful extension of methodology first reported by Ley and co-workers. Deprotection and ring opening of clihydropyridazine compounds was attempted, and unfortunately we were not able to generate (+)-sinefungin, although it is hoped that this route can be developed to achieve this in the future. 2010-10-15 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/12835/1/537640.pdf Hong, Wei (2010) Design and synthesis of protein arginine methyltransferase inhibitors. PhD thesis, University of Nottingham.
spellingShingle Hong, Wei
Design and synthesis of protein arginine methyltransferase inhibitors
title Design and synthesis of protein arginine methyltransferase inhibitors
title_full Design and synthesis of protein arginine methyltransferase inhibitors
title_fullStr Design and synthesis of protein arginine methyltransferase inhibitors
title_full_unstemmed Design and synthesis of protein arginine methyltransferase inhibitors
title_short Design and synthesis of protein arginine methyltransferase inhibitors
title_sort design and synthesis of protein arginine methyltransferase inhibitors
url https://eprints.nottingham.ac.uk/12835/