Multi-Scan Generalized Labeled Multi-Bernoulli Filter

© 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the labeled multi-target filtering density while a batch multi-target tracker propagate...

Full description

Bibliographic Details
Main Authors: Vo, Ba Tuong, Vo, Ba-Ngu
Format: Conference Paper
Published: 2018
Online Access:http://purl.org/au-research/grants/arc/DP170104854
http://hdl.handle.net/20.500.11937/71807
_version_ 1848762578038161408
author Vo, Ba Tuong
Vo, Ba-Ngu
author_facet Vo, Ba Tuong
Vo, Ba-Ngu
author_sort Vo, Ba Tuong
building Curtin Institutional Repository
collection Online Access
description © 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the labeled multi-target filtering density while a batch multi-target tracker propagates the labeled multi-target posterior density. The GLMB filter is an analytic solution to the labeled multi-target filtering recursion. In this work, we show that the GLMB filter can be extended to an analytic multi-object posterior recursion.
first_indexed 2025-11-14T10:49:47Z
format Conference Paper
id curtin-20.500.11937-71807
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:49:47Z
publishDate 2018
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-718072022-10-27T07:19:24Z Multi-Scan Generalized Labeled Multi-Bernoulli Filter Vo, Ba Tuong Vo, Ba-Ngu © 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the labeled multi-target filtering density while a batch multi-target tracker propagates the labeled multi-target posterior density. The GLMB filter is an analytic solution to the labeled multi-target filtering recursion. In this work, we show that the GLMB filter can be extended to an analytic multi-object posterior recursion. 2018 Conference Paper http://hdl.handle.net/20.500.11937/71807 10.23919/ICIF.2018.8455419 http://purl.org/au-research/grants/arc/DP170104854 http://purl.org/au-research/grants/arc/DP160104662 restricted
spellingShingle Vo, Ba Tuong
Vo, Ba-Ngu
Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title_full Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title_fullStr Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title_full_unstemmed Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title_short Multi-Scan Generalized Labeled Multi-Bernoulli Filter
title_sort multi-scan generalized labeled multi-bernoulli filter
url http://purl.org/au-research/grants/arc/DP170104854
http://purl.org/au-research/grants/arc/DP170104854
http://hdl.handle.net/20.500.11937/71807