In Situ Formation of Er0.4Bi1.6O3 Protective Layer at Cobaltite Cathode/Y2O3–ZrO2 Electrolyte Interface under Solid Oxide Fuel Cell Operation Conditions
© Copyright 2018 American Chemical Society. Bismuth-based oxides exhibit outstanding oxygen ionic conductivity and fast oxygen surface kinetics and have shown great potential as a highly active component for electrode materials in solid oxide fuel cells (SOFCs). Herein, a Nb-doped La0.6Sr0.4Co0.2Fe0...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2018
|
| Online Access: | http://purl.org/au-research/grants/arc/DP150102025 http://hdl.handle.net/20.500.11937/71096 |