Robust Fusion for Multisensor Multiobject Tracking
This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled m...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Institute of Electrical and Electronics Engineers
2018
|
| Online Access: | http://purl.org/au-research/grants/arc/DP160104662 http://hdl.handle.net/20.500.11937/67376 |
| _version_ | 1848761550149517312 |
|---|---|
| author | Fantacci, C. Vo, Ba-Ngu Vo, Ba Tuong Battistelli, G. Chisci, L. |
| author_facet | Fantacci, C. Vo, Ba-Ngu Vo, Ba Tuong Battistelli, G. Chisci, L. |
| author_sort | Fantacci, C. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled multiobject densities. Information fusion via Kullback-Leibler averaging ensures immunity to double counting of information and is essential to the development of effective multiagent multiobject estimation. |
| first_indexed | 2025-11-14T10:33:27Z |
| format | Journal Article |
| id | curtin-20.500.11937-67376 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T10:33:27Z |
| publishDate | 2018 |
| publisher | Institute of Electrical and Electronics Engineers |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-673762022-10-27T06:24:39Z Robust Fusion for Multisensor Multiobject Tracking Fantacci, C. Vo, Ba-Ngu Vo, Ba Tuong Battistelli, G. Chisci, L. This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled multiobject densities. Information fusion via Kullback-Leibler averaging ensures immunity to double counting of information and is essential to the development of effective multiagent multiobject estimation. 2018 Journal Article http://hdl.handle.net/20.500.11937/67376 10.1109/LSP.2018.2811750 http://purl.org/au-research/grants/arc/DP160104662 Institute of Electrical and Electronics Engineers restricted |
| spellingShingle | Fantacci, C. Vo, Ba-Ngu Vo, Ba Tuong Battistelli, G. Chisci, L. Robust Fusion for Multisensor Multiobject Tracking |
| title | Robust Fusion for Multisensor Multiobject Tracking |
| title_full | Robust Fusion for Multisensor Multiobject Tracking |
| title_fullStr | Robust Fusion for Multisensor Multiobject Tracking |
| title_full_unstemmed | Robust Fusion for Multisensor Multiobject Tracking |
| title_short | Robust Fusion for Multisensor Multiobject Tracking |
| title_sort | robust fusion for multisensor multiobject tracking |
| url | http://purl.org/au-research/grants/arc/DP160104662 http://hdl.handle.net/20.500.11937/67376 |