Robust Fusion for Multisensor Multiobject Tracking

This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled m...

Full description

Bibliographic Details
Main Authors: Fantacci, C., Vo, Ba-Ngu, Vo, Ba Tuong, Battistelli, G., Chisci, L.
Format: Journal Article
Published: Institute of Electrical and Electronics Engineers 2018
Online Access:http://purl.org/au-research/grants/arc/DP160104662
http://hdl.handle.net/20.500.11937/67376
_version_ 1848761550149517312
author Fantacci, C.
Vo, Ba-Ngu
Vo, Ba Tuong
Battistelli, G.
Chisci, L.
author_facet Fantacci, C.
Vo, Ba-Ngu
Vo, Ba Tuong
Battistelli, G.
Chisci, L.
author_sort Fantacci, C.
building Curtin Institutional Repository
collection Online Access
description This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled multiobject densities. Information fusion via Kullback-Leibler averaging ensures immunity to double counting of information and is essential to the development of effective multiagent multiobject estimation.
first_indexed 2025-11-14T10:33:27Z
format Journal Article
id curtin-20.500.11937-67376
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T10:33:27Z
publishDate 2018
publisher Institute of Electrical and Electronics Engineers
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-673762022-10-27T06:24:39Z Robust Fusion for Multisensor Multiobject Tracking Fantacci, C. Vo, Ba-Ngu Vo, Ba Tuong Battistelli, G. Chisci, L. This letter proposes analytical expressions for the fusion of certain classes of labeled multiobject densities via Kullback-Leibler averaging. Specifically, we provide analytical fusion rules for the labeled multi-Bernoulli and marginalized d-generalized labeled multi-Bernoulli families of labeled multiobject densities. Information fusion via Kullback-Leibler averaging ensures immunity to double counting of information and is essential to the development of effective multiagent multiobject estimation. 2018 Journal Article http://hdl.handle.net/20.500.11937/67376 10.1109/LSP.2018.2811750 http://purl.org/au-research/grants/arc/DP160104662 Institute of Electrical and Electronics Engineers restricted
spellingShingle Fantacci, C.
Vo, Ba-Ngu
Vo, Ba Tuong
Battistelli, G.
Chisci, L.
Robust Fusion for Multisensor Multiobject Tracking
title Robust Fusion for Multisensor Multiobject Tracking
title_full Robust Fusion for Multisensor Multiobject Tracking
title_fullStr Robust Fusion for Multisensor Multiobject Tracking
title_full_unstemmed Robust Fusion for Multisensor Multiobject Tracking
title_short Robust Fusion for Multisensor Multiobject Tracking
title_sort robust fusion for multisensor multiobject tracking
url http://purl.org/au-research/grants/arc/DP160104662
http://hdl.handle.net/20.500.11937/67376