Direct and reversible hydrogen storage of lithium hydride (LiH) nanoconfined in high surface area graphite
LiH has great potential as a high capacity hydrogen storage material (12 wt.%), however its thermodynamic stability has so far precluded practical application. Temperatures near 700 °C are required for hydrogen release and uptake. Herein, we report on a novel method to realise hydrogen uptake and re...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier Ltd
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/39361 |