Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
Control parameterization is a powerful numerical technique for solving optimal control problems with general nonlinear constraints. The main idea of control parameterization is to discretize the control space by approximating the control by a piecewise-constant or piecewise-linear function, thereby...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
American Institute of Mathematical Sciences
2012
|
| Online Access: | http://hdl.handle.net/20.500.11937/23872 |
| Summary: | Control parameterization is a powerful numerical technique for solving optimal control problems with general nonlinear constraints. The main idea of control parameterization is to discretize the control space by approximating the control by a piecewise-constant or piecewise-linear function, thereby yielding an approximate nonlinear programming problem. This approximate problem can then be solved using standard gradient-based optimization techniques. In this paper, we consider the control parameterization method for a class of optimal control problems in which the admissible controls are functions of bounded variation and the state and control are subject to continuous inequality constraints. We show that control parameterization generates a sequence of suboptimal controls whose costs converge to the true optimal cost. This result has previously only been proved for the case when the admissible controls are restricted to piecewise continuous functions. |
|---|