Analytical solutions of the space-time fractional derivative of advection dispersion equation

Fractional advection-dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in porous medium. A space-time fractional advection-dispersion equation (FADE) is a generalization of the classical ADE in which the first-order space derivativ...

Full description

Bibliographic Details
Main Authors: Atangana, Abdon, Kilicman, Adem
Format: Article
Language:English
Published: Hindawi Publishing Corporation 2013
Online Access:http://psasir.upm.edu.my/id/eprint/30133/
http://psasir.upm.edu.my/id/eprint/30133/
http://psasir.upm.edu.my/id/eprint/30133/
http://psasir.upm.edu.my/id/eprint/30133/1/30133.pdf
Description
Summary:Fractional advection-dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in porous medium. A space-time fractional advection-dispersion equation (FADE) is a generalization of the classical ADE in which the first-order space derivative is replaced with Caputo or Riemann-Liouville derivative of order 0 < β ≤ 1, and the second-order space derivative is replaced with the Caputo or the Riemann-Liouville fractional derivative of order 1 < ≤ 2. We derive the solution of the new equation in terms of Mittag-Leffler functions using Laplace transfrom. Some examples are given. The results from comparison let no doubt that the FADE is better in prediction than ADE.