Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose...

Full description

Bibliographic Details
Main Authors: Yong, Y.L., Tan, L.K., McLaughlin, R.A., Chee, K.H., Liew, Y.M.
Format: Article
Published: International Society for Optical Engineering (SPIE) 2017
Subjects:
Online Access:http://dx.doi.org/10.1117/1.JBO.22.12.126005
http://dx.doi.org/10.1117/1.JBO.22.12.126005
id um-18897
recordtype eprints
spelling um-188972018-06-28T06:46:10Z Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography Yong, Y.L. Tan, L.K. McLaughlin, R.A. Chee, K.H. Liew, Y.M. R Medicine T Technology (General) Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. International Society for Optical Engineering (SPIE) 2017 Article PeerReviewed http://dx.doi.org/10.1117/1.JBO.22.12.126005 Yong, Y.L.; Tan, L.K.; McLaughlin, R.A.; Chee, K.H.; Liew, Y.M. (2017) Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography. Journal of Biomedical Optics (JBO) <http://eprints.um.edu.my/view/publication/Journal_of_Biomedical_Optics_=28JBO=29.html>, 22 (12). p. 1. http://eprints.um.edu.my/18897/
repository_type Digital Repository
institution_category Local University
institution University Malaya
building UM Research Repository
collection Online Access
topic R Medicine
T Technology (General)
spellingShingle R Medicine
T Technology (General)
Yong, Y.L.
Tan, L.K.
McLaughlin, R.A.
Chee, K.H.
Liew, Y.M.
Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
description Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
format Article
author Yong, Y.L.
Tan, L.K.
McLaughlin, R.A.
Chee, K.H.
Liew, Y.M.
author_facet Yong, Y.L.
Tan, L.K.
McLaughlin, R.A.
Chee, K.H.
Liew, Y.M.
author_sort Yong, Y.L.
title Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
title_short Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
title_full Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
title_fullStr Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
title_full_unstemmed Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
title_sort linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography
publisher International Society for Optical Engineering (SPIE)
publishDate 2017
url http://dx.doi.org/10.1117/1.JBO.22.12.126005
http://dx.doi.org/10.1117/1.JBO.22.12.126005
first_indexed 2018-09-06T06:54:45Z
last_indexed 2018-09-06T06:54:45Z
_version_ 1610840156633300992