Iron arsenides with three-dimensional FeAs layer networks: Can(n+1)/2(Fe1−xPtx)(2+3n)Ptn(n−1)/2As(n+1)(n+2)/2 (n = 2, 3)

We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1−xPtx)(2+3n)Ptn(n−1)/2As(n+1)(n+2)/2 for n = 2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) w...

Full description

Bibliographic Details
Main Authors: Katayama, Naoyuki, Onari, Seiichiro, Matsubayashi, Kazuyuki, Uwatoko, Yoshiya, Sawa, Hiroshi
Format: Online
Language:English
Published: Nature Publishing Group 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171830/
Description
Summary:We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1−xPtx)(2+3n)Ptn(n−1)/2As(n+1)(n+2)/2 for n = 2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) with three-dimensional FeAs structures. The horizontal FeAs layers are bridged by inclined FeAs planes through edge-sharing FeAs5 square pyramids, resulting in triangular tunneling structures rather than the simple layered structures found in conventional iron arsenides. n = 3 system shows a sign of superconductivity with a small volume fraction. Our first-principles calculations of these systems clearly indicate that the Fermi surfaces originate from strong Fe-3d characters and the three-dimensional nature of the electric structures for both systems, thus offering the playgrounds to study the effects of dimensionality on high Tc superconductivity.