A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2016
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106034/ |
id |
pubmed-5106034 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-51060342016-12-08 A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger Paege, Norman Jung, Sascha Schäpe, Paul Müller-Hagen, Dirk Ouedraogo, Jean-Paul Heiderich, Caroline Jedamzick, Johanna Nitsche, Benjamin M. van den Hondel, Cees A. Ram, Arthur F. Meyer, Vera Research Article Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. Public Library of Science 2016-11-11 /pmc/articles/PMC5106034/ /pubmed/27835655 http://dx.doi.org/10.1371/journal.pone.0165755 Text en © 2016 Paege et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Paege, Norman Jung, Sascha Schäpe, Paul Müller-Hagen, Dirk Ouedraogo, Jean-Paul Heiderich, Caroline Jedamzick, Johanna Nitsche, Benjamin M. van den Hondel, Cees A. Ram, Arthur F. Meyer, Vera |
spellingShingle |
Paege, Norman Jung, Sascha Schäpe, Paul Müller-Hagen, Dirk Ouedraogo, Jean-Paul Heiderich, Caroline Jedamzick, Johanna Nitsche, Benjamin M. van den Hondel, Cees A. Ram, Arthur F. Meyer, Vera A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
author_facet |
Paege, Norman Jung, Sascha Schäpe, Paul Müller-Hagen, Dirk Ouedraogo, Jean-Paul Heiderich, Caroline Jedamzick, Johanna Nitsche, Benjamin M. van den Hondel, Cees A. Ram, Arthur F. Meyer, Vera |
author_sort |
Paege, Norman |
title |
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
title_short |
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
title_full |
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
title_fullStr |
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
title_full_unstemmed |
A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger |
title_sort |
transcriptome meta-analysis proposes novel biological roles for the antifungal protein anafp in aspergillus niger |
description |
Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. |
publisher |
Public Library of Science |
publishDate |
2016 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5106034/ |
_version_ |
1613723653379194880 |