Predictable Components of ENSO Evolution in Real-time Multi-Model Predictions

The most predictable components of the El Niño-Southern Oscillation (ENSO) evolution in real-time multi-model predictions are identified by applying an empirical orthogonal function analysis of the model data that maximizes the signal-to-noise ratio (MSN EOF). The normalized Niño3.4 index is analyze...

Full description

Bibliographic Details
Main Authors: Zheng, Zhihai, Hu, Zeng-Zhen, L’Heureux, Michelle
Format: Online
Language:English
Published: Nature Publishing Group 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075933/
Description
Summary:The most predictable components of the El Niño-Southern Oscillation (ENSO) evolution in real-time multi-model predictions are identified by applying an empirical orthogonal function analysis of the model data that maximizes the signal-to-noise ratio (MSN EOF). The normalized Niño3.4 index is analyzed for nine 3-month overlapping seasons. In this sense, the first most predictable component (MSN EOF1) is the decaying phase of ENSO during the Northern Hemisphere spring, followed by persistence through autumn and winter. The second most predictable component of ENSO evolution, with lower prediction skill and smaller explained variance than MSN EOF1, corresponds to the growth during spring and then persistence in summer and autumn. This result suggests that decay phase of ENSO is more predictable than the growth phase. Also, the most predictable components and the forecast skills in dynamical and statistical models are similar overall, with some differences arising during spring season initial conditions. Finally, the reconstructed predictions, with only the first two MSN components, show higher skill than the model raw predictions. Therefore this method can be used as a diagnostic for model comparison and development, and it can provide a new perspective for the most predictable components of ENSO.