Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven b...
Main Authors: | , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2016
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070787/ |