Several types of groupoids induced by two-variable functions
In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usep...
Main Authors: | , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Springer International Publishing
2016
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050187/ |
id |
pubmed-5050187 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-50501872016-10-24 Several types of groupoids induced by two-variable functions Allen, P. J. Kim, Hee Sik Neggers, J. Research In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a groupoid and if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : X^2\rightarrow X^2$$\end{document}φ:X2→X2 is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (a, b) = (u, v)$$\end{document}φ(a,b)=(u,v), then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a left-twisted semigroup with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}φ if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a*(b*c) = (u*v)*c$$\end{document}a∗(b∗c)=(u∗v)∗c. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a*b)*c = u*(v*c)$$\end{document}(a∗b)∗c=u∗(v∗c) for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,+, \cdot )$$\end{document}(X,+,·) via a formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x*y=\lambda x + \mu y$$\end{document}x∗y=λx+μy, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \mu \in X$$\end{document}λ,μ∈X, fixed structure constants. Properties of these groupoids as twisted semigroups are discussed with several results of interest obtained, e.g., that in this setting simultaneous left-twistedness and right-twistedness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) implies the fact that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a semigroup. Springer International Publishing 2016-10-04 /pmc/articles/PMC5050187/ /pubmed/27777851 http://dx.doi.org/10.1186/s40064-016-3411-y Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Allen, P. J. Kim, Hee Sik Neggers, J. |
spellingShingle |
Allen, P. J. Kim, Hee Sik Neggers, J. Several types of groupoids induced by two-variable functions |
author_facet |
Allen, P. J. Kim, Hee Sik Neggers, J. |
author_sort |
Allen, P. J. |
title |
Several types of groupoids induced by two-variable functions |
title_short |
Several types of groupoids induced by two-variable functions |
title_full |
Several types of groupoids induced by two-variable functions |
title_fullStr |
Several types of groupoids induced by two-variable functions |
title_full_unstemmed |
Several types of groupoids induced by two-variable functions |
title_sort |
several types of groupoids induced by two-variable functions |
description |
In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,*)$$\end{document}(X,∗) is a groupoid and if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi : X^2\rightarrow X^2$$\end{document}φ:X2→X2 is a function \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi (a, b) = (u, v)$$\end{document}φ(a,b)=(u,v), then \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,*)$$\end{document}(X,∗) is a left-twisted semigroup with respect to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi $$\end{document}φ if for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a*(b*c) = (u*v)*c$$\end{document}a∗(b∗c)=(u∗v)∗c. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(a*b)*c = u*(v*c)$$\end{document}(a∗b)∗c=u∗(v∗c) for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,+, \cdot )$$\end{document}(X,+,·) via a formula \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x*y=\lambda x + \mu y$$\end{document}x∗y=λx+μy, with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda , \mu \in X$$\end{document}λ,μ∈X, fixed structure constants. Properties of these groupoids as twisted semigroups are discussed with several results of interest obtained, e.g., that in this setting simultaneous left-twistedness and right-twistedness of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,*)$$\end{document}(X,∗) implies the fact that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,*)$$\end{document}(X,∗) is a semigroup. |
publisher |
Springer International Publishing |
publishDate |
2016 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050187/ |
_version_ |
1613672377091096576 |