Several types of groupoids induced by two-variable functions

In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usep...

Full description

Bibliographic Details
Main Authors: Allen, P. J., Kim, Hee Sik, Neggers, J.
Format: Online
Language:English
Published: Springer International Publishing 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050187/
id pubmed-5050187
recordtype oai_dc
spelling pubmed-50501872016-10-24 Several types of groupoids induced by two-variable functions Allen, P. J. Kim, Hee Sik Neggers, J. Research In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a groupoid and if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : X^2\rightarrow X^2$$\end{document}φ:X2→X2 is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (a, b) = (u, v)$$\end{document}φ(a,b)=(u,v), then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a left-twisted semigroup with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}φ if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a*(b*c) = (u*v)*c$$\end{document}a∗(b∗c)=(u∗v)∗c. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a*b)*c = u*(v*c)$$\end{document}(a∗b)∗c=u∗(v∗c) for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,+, \cdot )$$\end{document}(X,+,·) via a formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x*y=\lambda x + \mu y$$\end{document}x∗y=λx+μy, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \mu \in X$$\end{document}λ,μ∈X, fixed structure constants. Properties of these groupoids as twisted semigroups are discussed with several results of interest obtained, e.g., that in this setting simultaneous left-twistedness and right-twistedness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) implies the fact that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a semigroup. Springer International Publishing 2016-10-04 /pmc/articles/PMC5050187/ /pubmed/27777851 http://dx.doi.org/10.1186/s40064-016-3411-y Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Allen, P. J.
Kim, Hee Sik
Neggers, J.
spellingShingle Allen, P. J.
Kim, Hee Sik
Neggers, J.
Several types of groupoids induced by two-variable functions
author_facet Allen, P. J.
Kim, Hee Sik
Neggers, J.
author_sort Allen, P. J.
title Several types of groupoids induced by two-variable functions
title_short Several types of groupoids induced by two-variable functions
title_full Several types of groupoids induced by two-variable functions
title_fullStr Several types of groupoids induced by two-variable functions
title_full_unstemmed Several types of groupoids induced by two-variable functions
title_sort several types of groupoids induced by two-variable functions
description In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a groupoid and if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : X^2\rightarrow X^2$$\end{document}φ:X2→X2 is a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (a, b) = (u, v)$$\end{document}φ(a,b)=(u,v), then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a left-twisted semigroup with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}φ if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a*(b*c) = (u*v)*c$$\end{document}a∗(b∗c)=(u∗v)∗c. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a*b)*c = u*(v*c)$$\end{document}(a∗b)∗c=u∗(v∗c) for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b, c\in X$$\end{document}a,b,c∈X. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,+, \cdot )$$\end{document}(X,+,·) via a formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x*y=\lambda x + \mu y$$\end{document}x∗y=λx+μy, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \mu \in X$$\end{document}λ,μ∈X, fixed structure constants. Properties of these groupoids as twisted semigroups are discussed with several results of interest obtained, e.g., that in this setting simultaneous left-twistedness and right-twistedness of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) implies the fact that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,*)$$\end{document}(X,∗) is a semigroup.
publisher Springer International Publishing
publishDate 2016
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050187/
_version_ 1613672377091096576