A Regulated Double-Negative Feedback Decodes the Temporal Gradient of Input Stimulation in a Cell Signaling Network
Revealing the hidden mechanism of how cells sense and react to environmental signals has been a central question in cell biology. We focused on the rate of increase of stimulation, or temporal gradient, known to cause different responses of cells. We have investigated all possible three-node enzymat...
Main Authors: | , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2016
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008701/ |
Summary: | Revealing the hidden mechanism of how cells sense and react to environmental signals has been a central question in cell biology. We focused on the rate of increase of stimulation, or temporal gradient, known to cause different responses of cells. We have investigated all possible three-node enzymatic networks and identified a network motif that robustly generates a transient or sustained response by acute or gradual stimulation, respectively. We also found that a regulated double-negative feedback within the motif is essential for the temporal gradient-sensitive switching. Our analysis highlights the essential structure and mechanism enabling cells to properly respond to dynamic environmental changes. |
---|