Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility...

Full description

Bibliographic Details
Main Authors: Sieberts, Solveig K., Zhu, Fan, García-García, Javier, Stahl, Eli, Pratap, Abhishek, Pandey, Gaurav, Pappas, Dimitrios, Aguilar, Daniel, Anton, Bernat, Bonet, Jaume, Eksi, Ridvan, Fornés, Oriol, Guney, Emre, Li, Hongdong, Marín, Manuel Alejandro, Panwar, Bharat, Planas-Iglesias, Joan, Poglayen, Daniel, Cui, Jing, Falcao, Andre O., Suver, Christine, Hoff, Bruce, Balagurusamy, Venkat S. K., Dillenberger, Donna, Neto, Elias Chaibub, Norman, Thea, Aittokallio, Tero, Ammad-ud-din, Muhammad, Azencott, Chloe-Agathe, Bellón, Víctor, Boeva, Valentina, Bunte, Kerstin, Chheda, Himanshu, Cheng, Lu, Corander, Jukka, Dumontier, Michel, Goldenberg, Anna, Gopalacharyulu, Peddinti, Hajiloo, Mohsen, Hidru, Daniel, Jaiswal, Alok, Kaski, Samuel, Khalfaoui, Beyrem, Khan, Suleiman Ali, Kramer, Eric R., Marttinen, Pekka, Mezlini, Aziz M., Molparia, Bhuvan, Pirinen, Matti, Saarela, Janna, Samwald, Matthias, Stoven, Véronique, Tang, Hao, Tang, Jing, Torkamani, Ali, Vert, Jean-Phillipe, Wang, Bo, Wang, Tao, Wennerberg, Krister, Wineinger, Nathan E., Xiao, Guanghua, Xie, Yang, Yeung, Rae, Zhan, Xiaowei, Zhao, Cheng, Greenberg, Jeff, Kremer, Joel, Michaud, Kaleb, Barton, Anne, Coenen, Marieke, Mariette, Xavier, Miceli, Corinne, Shadick, Nancy, Weinblatt, Michael, de Vries, Niek, Tak, Paul P., Gerlag, Danielle, Huizinga, Tom W. J., Kurreeman, Fina, Allaart, Cornelia F., Louis Bridges Jr., S., Criswell, Lindsey, Moreland, Larry, Klareskog, Lars, Saevarsdottir, Saedis, Padyukov, Leonid, Gregersen, Peter K., Friend, Stephen, Plenge, Robert, Stolovitzky, Gustavo, Oliva, Baldo, Guan, Yuanfang, Mangravite, Lara M.
Format: Online
Language:English
Published: Nature Publishing Group 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996969/
id pubmed-4996969
recordtype oai_dc
spelling pubmed-49969692016-09-07 Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis Sieberts, Solveig K. Zhu, Fan García-García, Javier Stahl, Eli Pratap, Abhishek Pandey, Gaurav Pappas, Dimitrios Aguilar, Daniel Anton, Bernat Bonet, Jaume Eksi, Ridvan Fornés, Oriol Guney, Emre Li, Hongdong Marín, Manuel Alejandro Panwar, Bharat Planas-Iglesias, Joan Poglayen, Daniel Cui, Jing Falcao, Andre O. Suver, Christine Hoff, Bruce Balagurusamy, Venkat S. K. Dillenberger, Donna Neto, Elias Chaibub Norman, Thea Aittokallio, Tero Ammad-ud-din, Muhammad Azencott, Chloe-Agathe Bellón, Víctor Boeva, Valentina Bunte, Kerstin Chheda, Himanshu Cheng, Lu Corander, Jukka Dumontier, Michel Goldenberg, Anna Gopalacharyulu, Peddinti Hajiloo, Mohsen Hidru, Daniel Jaiswal, Alok Kaski, Samuel Khalfaoui, Beyrem Khan, Suleiman Ali Kramer, Eric R. Marttinen, Pekka Mezlini, Aziz M. Molparia, Bhuvan Pirinen, Matti Saarela, Janna Samwald, Matthias Stoven, Véronique Tang, Hao Tang, Jing Torkamani, Ali Vert, Jean-Phillipe Wang, Bo Wang, Tao Wennerberg, Krister Wineinger, Nathan E. Xiao, Guanghua Xie, Yang Yeung, Rae Zhan, Xiaowei Zhao, Cheng Greenberg, Jeff Kremer, Joel Michaud, Kaleb Barton, Anne Coenen, Marieke Mariette, Xavier Miceli, Corinne Shadick, Nancy Weinblatt, Michael de Vries, Niek Tak, Paul P. Gerlag, Danielle Huizinga, Tom W. J. Kurreeman, Fina Allaart, Cornelia F. Louis Bridges Jr., S. Criswell, Lindsey Moreland, Larry Klareskog, Lars Saevarsdottir, Saedis Padyukov, Leonid Gregersen, Peter K. Friend, Stephen Plenge, Robert Stolovitzky, Gustavo Oliva, Baldo Guan, Yuanfang Mangravite, Lara M. Article Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data. Nature Publishing Group 2016-08-23 /pmc/articles/PMC4996969/ /pubmed/27549343 http://dx.doi.org/10.1038/ncomms12460 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Sieberts, Solveig K.
Zhu, Fan
García-García, Javier
Stahl, Eli
Pratap, Abhishek
Pandey, Gaurav
Pappas, Dimitrios
Aguilar, Daniel
Anton, Bernat
Bonet, Jaume
Eksi, Ridvan
Fornés, Oriol
Guney, Emre
Li, Hongdong
Marín, Manuel Alejandro
Panwar, Bharat
Planas-Iglesias, Joan
Poglayen, Daniel
Cui, Jing
Falcao, Andre O.
Suver, Christine
Hoff, Bruce
Balagurusamy, Venkat S. K.
Dillenberger, Donna
Neto, Elias Chaibub
Norman, Thea
Aittokallio, Tero
Ammad-ud-din, Muhammad
Azencott, Chloe-Agathe
Bellón, Víctor
Boeva, Valentina
Bunte, Kerstin
Chheda, Himanshu
Cheng, Lu
Corander, Jukka
Dumontier, Michel
Goldenberg, Anna
Gopalacharyulu, Peddinti
Hajiloo, Mohsen
Hidru, Daniel
Jaiswal, Alok
Kaski, Samuel
Khalfaoui, Beyrem
Khan, Suleiman Ali
Kramer, Eric R.
Marttinen, Pekka
Mezlini, Aziz M.
Molparia, Bhuvan
Pirinen, Matti
Saarela, Janna
Samwald, Matthias
Stoven, Véronique
Tang, Hao
Tang, Jing
Torkamani, Ali
Vert, Jean-Phillipe
Wang, Bo
Wang, Tao
Wennerberg, Krister
Wineinger, Nathan E.
Xiao, Guanghua
Xie, Yang
Yeung, Rae
Zhan, Xiaowei
Zhao, Cheng
Greenberg, Jeff
Kremer, Joel
Michaud, Kaleb
Barton, Anne
Coenen, Marieke
Mariette, Xavier
Miceli, Corinne
Shadick, Nancy
Weinblatt, Michael
de Vries, Niek
Tak, Paul P.
Gerlag, Danielle
Huizinga, Tom W. J.
Kurreeman, Fina
Allaart, Cornelia F.
Louis Bridges Jr., S.
Criswell, Lindsey
Moreland, Larry
Klareskog, Lars
Saevarsdottir, Saedis
Padyukov, Leonid
Gregersen, Peter K.
Friend, Stephen
Plenge, Robert
Stolovitzky, Gustavo
Oliva, Baldo
Guan, Yuanfang
Mangravite, Lara M.
spellingShingle Sieberts, Solveig K.
Zhu, Fan
García-García, Javier
Stahl, Eli
Pratap, Abhishek
Pandey, Gaurav
Pappas, Dimitrios
Aguilar, Daniel
Anton, Bernat
Bonet, Jaume
Eksi, Ridvan
Fornés, Oriol
Guney, Emre
Li, Hongdong
Marín, Manuel Alejandro
Panwar, Bharat
Planas-Iglesias, Joan
Poglayen, Daniel
Cui, Jing
Falcao, Andre O.
Suver, Christine
Hoff, Bruce
Balagurusamy, Venkat S. K.
Dillenberger, Donna
Neto, Elias Chaibub
Norman, Thea
Aittokallio, Tero
Ammad-ud-din, Muhammad
Azencott, Chloe-Agathe
Bellón, Víctor
Boeva, Valentina
Bunte, Kerstin
Chheda, Himanshu
Cheng, Lu
Corander, Jukka
Dumontier, Michel
Goldenberg, Anna
Gopalacharyulu, Peddinti
Hajiloo, Mohsen
Hidru, Daniel
Jaiswal, Alok
Kaski, Samuel
Khalfaoui, Beyrem
Khan, Suleiman Ali
Kramer, Eric R.
Marttinen, Pekka
Mezlini, Aziz M.
Molparia, Bhuvan
Pirinen, Matti
Saarela, Janna
Samwald, Matthias
Stoven, Véronique
Tang, Hao
Tang, Jing
Torkamani, Ali
Vert, Jean-Phillipe
Wang, Bo
Wang, Tao
Wennerberg, Krister
Wineinger, Nathan E.
Xiao, Guanghua
Xie, Yang
Yeung, Rae
Zhan, Xiaowei
Zhao, Cheng
Greenberg, Jeff
Kremer, Joel
Michaud, Kaleb
Barton, Anne
Coenen, Marieke
Mariette, Xavier
Miceli, Corinne
Shadick, Nancy
Weinblatt, Michael
de Vries, Niek
Tak, Paul P.
Gerlag, Danielle
Huizinga, Tom W. J.
Kurreeman, Fina
Allaart, Cornelia F.
Louis Bridges Jr., S.
Criswell, Lindsey
Moreland, Larry
Klareskog, Lars
Saevarsdottir, Saedis
Padyukov, Leonid
Gregersen, Peter K.
Friend, Stephen
Plenge, Robert
Stolovitzky, Gustavo
Oliva, Baldo
Guan, Yuanfang
Mangravite, Lara M.
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
author_facet Sieberts, Solveig K.
Zhu, Fan
García-García, Javier
Stahl, Eli
Pratap, Abhishek
Pandey, Gaurav
Pappas, Dimitrios
Aguilar, Daniel
Anton, Bernat
Bonet, Jaume
Eksi, Ridvan
Fornés, Oriol
Guney, Emre
Li, Hongdong
Marín, Manuel Alejandro
Panwar, Bharat
Planas-Iglesias, Joan
Poglayen, Daniel
Cui, Jing
Falcao, Andre O.
Suver, Christine
Hoff, Bruce
Balagurusamy, Venkat S. K.
Dillenberger, Donna
Neto, Elias Chaibub
Norman, Thea
Aittokallio, Tero
Ammad-ud-din, Muhammad
Azencott, Chloe-Agathe
Bellón, Víctor
Boeva, Valentina
Bunte, Kerstin
Chheda, Himanshu
Cheng, Lu
Corander, Jukka
Dumontier, Michel
Goldenberg, Anna
Gopalacharyulu, Peddinti
Hajiloo, Mohsen
Hidru, Daniel
Jaiswal, Alok
Kaski, Samuel
Khalfaoui, Beyrem
Khan, Suleiman Ali
Kramer, Eric R.
Marttinen, Pekka
Mezlini, Aziz M.
Molparia, Bhuvan
Pirinen, Matti
Saarela, Janna
Samwald, Matthias
Stoven, Véronique
Tang, Hao
Tang, Jing
Torkamani, Ali
Vert, Jean-Phillipe
Wang, Bo
Wang, Tao
Wennerberg, Krister
Wineinger, Nathan E.
Xiao, Guanghua
Xie, Yang
Yeung, Rae
Zhan, Xiaowei
Zhao, Cheng
Greenberg, Jeff
Kremer, Joel
Michaud, Kaleb
Barton, Anne
Coenen, Marieke
Mariette, Xavier
Miceli, Corinne
Shadick, Nancy
Weinblatt, Michael
de Vries, Niek
Tak, Paul P.
Gerlag, Danielle
Huizinga, Tom W. J.
Kurreeman, Fina
Allaart, Cornelia F.
Louis Bridges Jr., S.
Criswell, Lindsey
Moreland, Larry
Klareskog, Lars
Saevarsdottir, Saedis
Padyukov, Leonid
Gregersen, Peter K.
Friend, Stephen
Plenge, Robert
Stolovitzky, Gustavo
Oliva, Baldo
Guan, Yuanfang
Mangravite, Lara M.
author_sort Sieberts, Solveig K.
title Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
title_short Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
title_full Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
title_fullStr Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
title_full_unstemmed Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
title_sort crowdsourced assessment of common genetic contribution to predicting anti-tnf treatment response in rheumatoid arthritis
description Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.
publisher Nature Publishing Group
publishDate 2016
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996969/
_version_ 1613634188195397632