Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Nature Publishing Group
2016
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996969/ |
id |
pubmed-4996969 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-49969692016-09-07 Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis Sieberts, Solveig K. Zhu, Fan García-García, Javier Stahl, Eli Pratap, Abhishek Pandey, Gaurav Pappas, Dimitrios Aguilar, Daniel Anton, Bernat Bonet, Jaume Eksi, Ridvan Fornés, Oriol Guney, Emre Li, Hongdong Marín, Manuel Alejandro Panwar, Bharat Planas-Iglesias, Joan Poglayen, Daniel Cui, Jing Falcao, Andre O. Suver, Christine Hoff, Bruce Balagurusamy, Venkat S. K. Dillenberger, Donna Neto, Elias Chaibub Norman, Thea Aittokallio, Tero Ammad-ud-din, Muhammad Azencott, Chloe-Agathe Bellón, Víctor Boeva, Valentina Bunte, Kerstin Chheda, Himanshu Cheng, Lu Corander, Jukka Dumontier, Michel Goldenberg, Anna Gopalacharyulu, Peddinti Hajiloo, Mohsen Hidru, Daniel Jaiswal, Alok Kaski, Samuel Khalfaoui, Beyrem Khan, Suleiman Ali Kramer, Eric R. Marttinen, Pekka Mezlini, Aziz M. Molparia, Bhuvan Pirinen, Matti Saarela, Janna Samwald, Matthias Stoven, Véronique Tang, Hao Tang, Jing Torkamani, Ali Vert, Jean-Phillipe Wang, Bo Wang, Tao Wennerberg, Krister Wineinger, Nathan E. Xiao, Guanghua Xie, Yang Yeung, Rae Zhan, Xiaowei Zhao, Cheng Greenberg, Jeff Kremer, Joel Michaud, Kaleb Barton, Anne Coenen, Marieke Mariette, Xavier Miceli, Corinne Shadick, Nancy Weinblatt, Michael de Vries, Niek Tak, Paul P. Gerlag, Danielle Huizinga, Tom W. J. Kurreeman, Fina Allaart, Cornelia F. Louis Bridges Jr., S. Criswell, Lindsey Moreland, Larry Klareskog, Lars Saevarsdottir, Saedis Padyukov, Leonid Gregersen, Peter K. Friend, Stephen Plenge, Robert Stolovitzky, Gustavo Oliva, Baldo Guan, Yuanfang Mangravite, Lara M. Article Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data. Nature Publishing Group 2016-08-23 /pmc/articles/PMC4996969/ /pubmed/27549343 http://dx.doi.org/10.1038/ncomms12460 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Sieberts, Solveig K. Zhu, Fan García-García, Javier Stahl, Eli Pratap, Abhishek Pandey, Gaurav Pappas, Dimitrios Aguilar, Daniel Anton, Bernat Bonet, Jaume Eksi, Ridvan Fornés, Oriol Guney, Emre Li, Hongdong Marín, Manuel Alejandro Panwar, Bharat Planas-Iglesias, Joan Poglayen, Daniel Cui, Jing Falcao, Andre O. Suver, Christine Hoff, Bruce Balagurusamy, Venkat S. K. Dillenberger, Donna Neto, Elias Chaibub Norman, Thea Aittokallio, Tero Ammad-ud-din, Muhammad Azencott, Chloe-Agathe Bellón, Víctor Boeva, Valentina Bunte, Kerstin Chheda, Himanshu Cheng, Lu Corander, Jukka Dumontier, Michel Goldenberg, Anna Gopalacharyulu, Peddinti Hajiloo, Mohsen Hidru, Daniel Jaiswal, Alok Kaski, Samuel Khalfaoui, Beyrem Khan, Suleiman Ali Kramer, Eric R. Marttinen, Pekka Mezlini, Aziz M. Molparia, Bhuvan Pirinen, Matti Saarela, Janna Samwald, Matthias Stoven, Véronique Tang, Hao Tang, Jing Torkamani, Ali Vert, Jean-Phillipe Wang, Bo Wang, Tao Wennerberg, Krister Wineinger, Nathan E. Xiao, Guanghua Xie, Yang Yeung, Rae Zhan, Xiaowei Zhao, Cheng Greenberg, Jeff Kremer, Joel Michaud, Kaleb Barton, Anne Coenen, Marieke Mariette, Xavier Miceli, Corinne Shadick, Nancy Weinblatt, Michael de Vries, Niek Tak, Paul P. Gerlag, Danielle Huizinga, Tom W. J. Kurreeman, Fina Allaart, Cornelia F. Louis Bridges Jr., S. Criswell, Lindsey Moreland, Larry Klareskog, Lars Saevarsdottir, Saedis Padyukov, Leonid Gregersen, Peter K. Friend, Stephen Plenge, Robert Stolovitzky, Gustavo Oliva, Baldo Guan, Yuanfang Mangravite, Lara M. |
spellingShingle |
Sieberts, Solveig K. Zhu, Fan García-García, Javier Stahl, Eli Pratap, Abhishek Pandey, Gaurav Pappas, Dimitrios Aguilar, Daniel Anton, Bernat Bonet, Jaume Eksi, Ridvan Fornés, Oriol Guney, Emre Li, Hongdong Marín, Manuel Alejandro Panwar, Bharat Planas-Iglesias, Joan Poglayen, Daniel Cui, Jing Falcao, Andre O. Suver, Christine Hoff, Bruce Balagurusamy, Venkat S. K. Dillenberger, Donna Neto, Elias Chaibub Norman, Thea Aittokallio, Tero Ammad-ud-din, Muhammad Azencott, Chloe-Agathe Bellón, Víctor Boeva, Valentina Bunte, Kerstin Chheda, Himanshu Cheng, Lu Corander, Jukka Dumontier, Michel Goldenberg, Anna Gopalacharyulu, Peddinti Hajiloo, Mohsen Hidru, Daniel Jaiswal, Alok Kaski, Samuel Khalfaoui, Beyrem Khan, Suleiman Ali Kramer, Eric R. Marttinen, Pekka Mezlini, Aziz M. Molparia, Bhuvan Pirinen, Matti Saarela, Janna Samwald, Matthias Stoven, Véronique Tang, Hao Tang, Jing Torkamani, Ali Vert, Jean-Phillipe Wang, Bo Wang, Tao Wennerberg, Krister Wineinger, Nathan E. Xiao, Guanghua Xie, Yang Yeung, Rae Zhan, Xiaowei Zhao, Cheng Greenberg, Jeff Kremer, Joel Michaud, Kaleb Barton, Anne Coenen, Marieke Mariette, Xavier Miceli, Corinne Shadick, Nancy Weinblatt, Michael de Vries, Niek Tak, Paul P. Gerlag, Danielle Huizinga, Tom W. J. Kurreeman, Fina Allaart, Cornelia F. Louis Bridges Jr., S. Criswell, Lindsey Moreland, Larry Klareskog, Lars Saevarsdottir, Saedis Padyukov, Leonid Gregersen, Peter K. Friend, Stephen Plenge, Robert Stolovitzky, Gustavo Oliva, Baldo Guan, Yuanfang Mangravite, Lara M. Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
author_facet |
Sieberts, Solveig K. Zhu, Fan García-García, Javier Stahl, Eli Pratap, Abhishek Pandey, Gaurav Pappas, Dimitrios Aguilar, Daniel Anton, Bernat Bonet, Jaume Eksi, Ridvan Fornés, Oriol Guney, Emre Li, Hongdong Marín, Manuel Alejandro Panwar, Bharat Planas-Iglesias, Joan Poglayen, Daniel Cui, Jing Falcao, Andre O. Suver, Christine Hoff, Bruce Balagurusamy, Venkat S. K. Dillenberger, Donna Neto, Elias Chaibub Norman, Thea Aittokallio, Tero Ammad-ud-din, Muhammad Azencott, Chloe-Agathe Bellón, Víctor Boeva, Valentina Bunte, Kerstin Chheda, Himanshu Cheng, Lu Corander, Jukka Dumontier, Michel Goldenberg, Anna Gopalacharyulu, Peddinti Hajiloo, Mohsen Hidru, Daniel Jaiswal, Alok Kaski, Samuel Khalfaoui, Beyrem Khan, Suleiman Ali Kramer, Eric R. Marttinen, Pekka Mezlini, Aziz M. Molparia, Bhuvan Pirinen, Matti Saarela, Janna Samwald, Matthias Stoven, Véronique Tang, Hao Tang, Jing Torkamani, Ali Vert, Jean-Phillipe Wang, Bo Wang, Tao Wennerberg, Krister Wineinger, Nathan E. Xiao, Guanghua Xie, Yang Yeung, Rae Zhan, Xiaowei Zhao, Cheng Greenberg, Jeff Kremer, Joel Michaud, Kaleb Barton, Anne Coenen, Marieke Mariette, Xavier Miceli, Corinne Shadick, Nancy Weinblatt, Michael de Vries, Niek Tak, Paul P. Gerlag, Danielle Huizinga, Tom W. J. Kurreeman, Fina Allaart, Cornelia F. Louis Bridges Jr., S. Criswell, Lindsey Moreland, Larry Klareskog, Lars Saevarsdottir, Saedis Padyukov, Leonid Gregersen, Peter K. Friend, Stephen Plenge, Robert Stolovitzky, Gustavo Oliva, Baldo Guan, Yuanfang Mangravite, Lara M. |
author_sort |
Sieberts, Solveig K. |
title |
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
title_short |
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
title_full |
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
title_fullStr |
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
title_full_unstemmed |
Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis |
title_sort |
crowdsourced assessment of common genetic contribution to predicting anti-tnf treatment response in rheumatoid arthritis |
description |
Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data. |
publisher |
Nature Publishing Group |
publishDate |
2016 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996969/ |
_version_ |
1613634188195397632 |