Landscape genetics of the nonnative red fox of California

Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground‐nesting birds and native canids. These foxes derive primarily from captive‐reared animals associated with t...

Full description

Bibliographic Details
Main Authors: Sacks, Benjamin N., Brazeal, Jennifer L., Lewis, Jeffrey C.
Format: Online
Language:English
Published: John Wiley and Sons Inc. 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979706/
id pubmed-4979706
recordtype oai_dc
spelling pubmed-49797062016-08-19 Landscape genetics of the nonnative red fox of California Sacks, Benjamin N. Brazeal, Jennifer L. Lewis, Jeffrey C. Original Research Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground‐nesting birds and native canids. These foxes derive primarily from captive‐reared animals associated with the fur‐farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape‐genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape‐genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape‐genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox. John Wiley and Sons Inc. 2016-06-16 /pmc/articles/PMC4979706/ /pubmed/27547312 http://dx.doi.org/10.1002/ece3.2229 Text en © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Sacks, Benjamin N.
Brazeal, Jennifer L.
Lewis, Jeffrey C.
spellingShingle Sacks, Benjamin N.
Brazeal, Jennifer L.
Lewis, Jeffrey C.
Landscape genetics of the nonnative red fox of California
author_facet Sacks, Benjamin N.
Brazeal, Jennifer L.
Lewis, Jeffrey C.
author_sort Sacks, Benjamin N.
title Landscape genetics of the nonnative red fox of California
title_short Landscape genetics of the nonnative red fox of California
title_full Landscape genetics of the nonnative red fox of California
title_fullStr Landscape genetics of the nonnative red fox of California
title_full_unstemmed Landscape genetics of the nonnative red fox of California
title_sort landscape genetics of the nonnative red fox of california
description Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground‐nesting birds and native canids. These foxes derive primarily from captive‐reared animals associated with the fur‐farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape‐genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape‐genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape‐genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.
publisher John Wiley and Sons Inc.
publishDate 2016
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979706/
_version_ 1613624945734057984