The carboxyl terminal mutational hotspot of the ciliary disease protein RPGRORF15 (retinitis pigmentosa GTPase regulator) is glutamylated in vivo

Mutations in RPGRORF15 (retinitis pigmentosa GTPase regulator) are a major cause of inherited retinal degenerative diseases. RPGRORF15 (1152 residues) is a ciliary protein involved in regulating the composition and function of photoreceptor cilia. The mutational hotspot in RPGRORF15 is an unusual C-...

Full description

Bibliographic Details
Main Authors: Rao, Kollu N., Anand, Manisha, Khanna, Hemant
Format: Online
Language:English
Published: The Company of Biologists Ltd 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4890669/
Description
Summary:Mutations in RPGRORF15 (retinitis pigmentosa GTPase regulator) are a major cause of inherited retinal degenerative diseases. RPGRORF15 (1152 residues) is a ciliary protein involved in regulating the composition and function of photoreceptor cilia. The mutational hotspot in RPGRORF15 is an unusual C-terminal domain encoded by exon ORF15, which is rich in polyglutamates and glycine residues (Glu-Gly domain) followed by a short stretch of basic amino acid residues (RPGRC2 domain; residues 1072-1152). However, the properties of the ORF15-encoded domain and its involvement in the pathogenesis of the disease are unclear. Here we show that RPGRORF15 is glutamylated at the C-terminus, as determined by binding to GT335, which recognizes glutamylated substrates. This reactivity is lost in two mouse mutants of Rpgr, which do not express RPGRORF15 due to disease-causing mutations in exon ORF15. Our results indicate that RPGRORF15 is posttranslationally glutamylated in the Glu-Gly domain and that the GT335 antibody predominantly recognizes RPGRORF15 in photoreceptor cilia.