Analysis of alcoholic EEG signals based on horizontal visibility graph entropy
This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A s...
Main Authors: | , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Springer Berlin Heidelberg
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883153/ |
id |
pubmed-4883153 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-48831532016-08-19 Analysis of alcoholic EEG signals based on horizontal visibility graph entropy Zhu, Guohun Li, Yan Wen, Peng (Paul) Wang, Shuaifang Articles This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A statistical analysis method is employed to choose the optimal channels to identify the abnormalities in alcoholics. Five group channels are selected and forwarded to a K-Nearest Neighbour (K-NN) and a support vector machine (SVM) to conduct classification, respectively. The experimental results show that the HVGEs associated with left hemisphere, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}C1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}C3 and FC5 electrodes, of alcoholics are significantly abnormal. The accuracy of classification with 10-fold cross-validation is 87.5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}% with about three HVGE features. By using just optimal 13-dimension HVGE features, the accuracy is 95.8 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}%. In contrast, SaE features associated cannot identify the left hemisphere disorder for alcoholism and the maximum classification ratio based on SaE is just 95.2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}% even using all channel signals. These results demonstrate that the HVGE method is a promising approach for alcoholism identification by EEG signals. Springer Berlin Heidelberg 2014-09-13 /pmc/articles/PMC4883153/ /pubmed/27747525 http://dx.doi.org/10.1007/s40708-014-0003-x Text en © The Author(s) 2014 Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Zhu, Guohun Li, Yan Wen, Peng (Paul) Wang, Shuaifang |
spellingShingle |
Zhu, Guohun Li, Yan Wen, Peng (Paul) Wang, Shuaifang Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
author_facet |
Zhu, Guohun Li, Yan Wen, Peng (Paul) Wang, Shuaifang |
author_sort |
Zhu, Guohun |
title |
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
title_short |
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
title_full |
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
title_fullStr |
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
title_full_unstemmed |
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy |
title_sort |
analysis of alcoholic eeg signals based on horizontal visibility graph entropy |
description |
This paper proposes a novel horizontal visibility graph entropy (HVGE) approach to evaluate EEG signals from alcoholic subjects and controlled drinkers and compare with a sample entropy (SaE) method. Firstly, HVGEs and SaEs are extracted from 1,200 recordings of biomedical signals, respectively. A statistical analysis method is employed to choose the optimal channels to identify the abnormalities in alcoholics. Five group channels are selected and forwarded to a K-Nearest Neighbour (K-NN) and a support vector machine (SVM) to conduct classification, respectively. The experimental results show that the HVGEs associated with left hemisphere, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C$$\end{document}C1, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C$$\end{document}C3 and FC5 electrodes, of alcoholics are significantly abnormal. The accuracy of classification with 10-fold cross-validation is 87.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% with about three HVGE features. By using just optimal 13-dimension HVGE features, the accuracy is 95.8 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}%. In contrast, SaE features associated cannot identify the left hemisphere disorder for alcoholism and the maximum classification ratio based on SaE is just 95.2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% even using all channel signals. These results demonstrate that the HVGE method is a promising approach for alcoholism identification by EEG signals. |
publisher |
Springer Berlin Heidelberg |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883153/ |
_version_ |
1613585339098595328 |