Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin

Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in m...

Full description

Bibliographic Details
Main Authors: Wu, Yong-Ping, Feng, Guo-Lin, Li, Bai-Lian
Format: Online
Language:English
Published: Nature Publishing Group 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873833/
Description
Summary:Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.