Neuroprotective Activity of (−)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity

Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS...

Full description

Bibliographic Details
Main Authors: Liu, Jin-Biao, Zhou, Li, Wang, Yi-Zhong, Wang, Xu, Zhou, Yu, Ho, Wen-Zhe, Li, Jie-Liang
Format: Online
Language:English
Published: Hindawi Publishing Corporation 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844887/
Description
Summary:Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.