Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples

This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and vary...

Full description

Bibliographic Details
Main Authors: Adebanji, Atinuke, Asamoah-Boaheng, Michael, Osei-Tutu, Olivia
Format: Online
Language:English
Published: Springer International Publishing 2016
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735077/
id pubmed-4735077
recordtype oai_dc
spelling pubmed-47350772016-02-12 Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples Adebanji, Atinuke Asamoah-Boaheng, Michael Osei-Tutu, Olivia Research This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and varying group centroid separators (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}δ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = 1; 2; 3; 4; 5$$\end{document}δ=1;2;3;4;5) on classification accuracy of the QDF using simulated data from three populations (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{i}, i=1,2,3$$\end{document}πi,i=1,2,3). The three populations differs with respect to their mean vector and covariance matrices. The results show the correlated normal distribution exhibits high coefficient of variation as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}δ increased. The QDF performed better when the training samples were correlated than when they were under uncorrelated normal distribution. The QDF performed better resulting in the reduction in misclassification error rates as group centroid separator increases with non increasing sample size under correlated training samples. Springer International Publishing 2016-02-01 /pmc/articles/PMC4735077/ /pubmed/26877900 http://dx.doi.org/10.1186/s40064-016-1718-3 Text en © Adebanji et al. 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Adebanji, Atinuke
Asamoah-Boaheng, Michael
Osei-Tutu, Olivia
spellingShingle Adebanji, Atinuke
Asamoah-Boaheng, Michael
Osei-Tutu, Olivia
Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
author_facet Adebanji, Atinuke
Asamoah-Boaheng, Michael
Osei-Tutu, Olivia
author_sort Adebanji, Atinuke
title Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
title_short Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
title_full Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
title_fullStr Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
title_full_unstemmed Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples
title_sort robustness of the quadratic discriminant function to correlated and uncorrelated normal training samples
description This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and varying group centroid separators (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}δ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = 1; 2; 3; 4; 5$$\end{document}δ=1;2;3;4;5) on classification accuracy of the QDF using simulated data from three populations (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{i}, i=1,2,3$$\end{document}πi,i=1,2,3). The three populations differs with respect to their mean vector and covariance matrices. The results show the correlated normal distribution exhibits high coefficient of variation as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}δ increased. The QDF performed better when the training samples were correlated than when they were under uncorrelated normal distribution. The QDF performed better resulting in the reduction in misclassification error rates as group centroid separator increases with non increasing sample size under correlated training samples.
publisher Springer International Publishing
publishDate 2016
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735077/
_version_ 1613531251042418688