Summary: | From an initial dataset of 53 theropod species, the general relationship between theropod lower-leg length and body mass is identified. After factoring out this allometric relationship, theropod hindlimb proportions are assessed irrespective of body mass. Cursorial-limb-proportion (CLP) scores derived for each of the considered theropod taxa offer a measure of the extent to which a particular species deviates in favour of higher or lower running speeds. Within the same theropod species, these CLP scores are found to be consistent across multiple adult specimens and across disparate ontogenetic stages. Early theropods are found to have low CLP scores, while the coelurosaurian tyrannosauroids and compsognathids are found to have high CLP scores. Among deinonychosaurs, troodontids have consistently high CLP scores, while many dromaeosaur taxa, including Velociraptor and Deinonychus, have low CLP scores. This indicates that dromaeosaurs were not, overall, a particularly cursorily adapted group. Comparisons between the CLP scores of Tyrannosaurus and specimens referred to the controversial genus Nanotyrannus indicate a strong discrepancy in cursorial adaptations, which supports the legitimacy of Nanotyrannus and the previous suggestions of ecological partitioning between Nanotyrannus and the contemporaneous Tyrannosaurus.
|