SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering...
Main Authors: | , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
The Company of Biologists
2015
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571095/ |
id |
pubmed-4571095 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-45710952015-09-17 SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles Kubo, Keiji Kobayashi, Minako Nozaki, Shohei Yagi, Chikako Hatsuzawa, Kiyotaka Katoh, Yohei Shin, Hye-Won Takahashi, Senye Nakayama, Kazuhisa Research Article We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. The Company of Biologists 2015-06-19 /pmc/articles/PMC4571095/ /pubmed/26092867 http://dx.doi.org/10.1242/bio.012146 Text en © 2015. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Kubo, Keiji Kobayashi, Minako Nozaki, Shohei Yagi, Chikako Hatsuzawa, Kiyotaka Katoh, Yohei Shin, Hye-Won Takahashi, Senye Nakayama, Kazuhisa |
spellingShingle |
Kubo, Keiji Kobayashi, Minako Nozaki, Shohei Yagi, Chikako Hatsuzawa, Kiyotaka Katoh, Yohei Shin, Hye-Won Takahashi, Senye Nakayama, Kazuhisa SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
author_facet |
Kubo, Keiji Kobayashi, Minako Nozaki, Shohei Yagi, Chikako Hatsuzawa, Kiyotaka Katoh, Yohei Shin, Hye-Won Takahashi, Senye Nakayama, Kazuhisa |
author_sort |
Kubo, Keiji |
title |
SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
title_short |
SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
title_full |
SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
title_fullStr |
SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
title_full_unstemmed |
SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
title_sort |
snap23/25 and vamp2 mediate exocytic event of transferrin receptor-containing recycling vesicles |
description |
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25. |
publisher |
The Company of Biologists |
publishDate |
2015 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571095/ |
_version_ |
1613476254267211776 |