The transcriptional response of microbial communities in thawing Alaskan permafrost soils

Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic...

Full description

Bibliographic Details
Main Authors: Coolen, Marco J. L., Orsi, William D.
Format: Online
Language:English
Published: Frontiers Media S.A. 2015
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360760/
id pubmed-4360760
recordtype oai_dc
spelling pubmed-43607602015-04-07 The transcriptional response of microbial communities in thawing Alaskan permafrost soils Coolen, Marco J. L. Orsi, William D. Microbiology Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. Frontiers Media S.A. 2015-03-16 /pmc/articles/PMC4360760/ /pubmed/25852660 http://dx.doi.org/10.3389/fmicb.2015.00197 Text en Copyright © 2015 Coolen and Orsi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Coolen, Marco J. L.
Orsi, William D.
spellingShingle Coolen, Marco J. L.
Orsi, William D.
The transcriptional response of microbial communities in thawing Alaskan permafrost soils
author_facet Coolen, Marco J. L.
Orsi, William D.
author_sort Coolen, Marco J. L.
title The transcriptional response of microbial communities in thawing Alaskan permafrost soils
title_short The transcriptional response of microbial communities in thawing Alaskan permafrost soils
title_full The transcriptional response of microbial communities in thawing Alaskan permafrost soils
title_fullStr The transcriptional response of microbial communities in thawing Alaskan permafrost soils
title_full_unstemmed The transcriptional response of microbial communities in thawing Alaskan permafrost soils
title_sort transcriptional response of microbial communities in thawing alaskan permafrost soils
description Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
publisher Frontiers Media S.A.
publishDate 2015
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360760/
_version_ 1613199028657324032