Impact of the Uremic Milieu on the Osteogenic Potential of Mesenchymal Stem Cells

Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro...

Full description

Bibliographic Details
Main Authors: Lanza, Diana, Perna, Alessandra F., Oliva, Adriana, Vanholder, Raymond, Pletinck, Anneleen, Guastafierro, Salvatore, Di Nunzio, Annarita, Vigorito, Carmela, Capasso, Giovambattista, Jankowski, Vera, Jankowski, Joachim, Ingrosso, Diego
Format: Online
Language:English
Published: Public Library of Science 2015
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312090/
Description
Summary:Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.