A framework for the interpretation of de novo mutation in human disease

Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-r...

Full description

Bibliographic Details
Main Authors: Samocha, Kaitlin E., Robinson, Elise B., Sanders, Stephan J., Stevens, Christine, Sabo, Aniko, McGrath, Lauren M., Kosmicki, Jack A., Rehnström, Karola, Mallick, Swapan, Kirby, Andrew, Wall, Dennis P., MacArthur, Daniel G., Gabriel, Stacey B., dePristo, Mark, Purcell, Shaun M., Palotie, Aarno, Boerwinkle, Eric, Buxbaum, Joseph D., Cook, Edwin H., Gibbs, Richard A., Schellenberg, Gerard D., Sutcliffe, James S., Devlin, Bernie, Roeder, Kathryn, Neale, Benjamin M., Daly, Mark J.
Format: Online
Language:English
Published: 2014
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222185/
id pubmed-4222185
recordtype oai_dc
spelling pubmed-42221852015-03-01 A framework for the interpretation of de novo mutation in human disease Samocha, Kaitlin E. Robinson, Elise B. Sanders, Stephan J. Stevens, Christine Sabo, Aniko McGrath, Lauren M. Kosmicki, Jack A. Rehnström, Karola Mallick, Swapan Kirby, Andrew Wall, Dennis P. MacArthur, Daniel G. Gabriel, Stacey B. dePristo, Mark Purcell, Shaun M. Palotie, Aarno Boerwinkle, Eric Buxbaum, Joseph D. Cook, Edwin H. Gibbs, Richard A. Schellenberg, Gerard D. Sutcliffe, James S. Devlin, Bernie Roeder, Kathryn Neale, Benjamin M. Daly, Mark J. Article Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. We provide a statistical framework for the analysis of DNM excesses per gene and gene set by calibrating a model of de novo mutation. We applied this framework to DNMs collected from 1,078 ASD trios and – while affirming a significant role for loss-of-function (LoF) mutations – found no excess of de novo LoF mutations in cases with IQ above 100, suggesting that the role of DNMs in ASD may reside in fundamental neurodevelopmental processes. We also used our model to identify ~1,000 genes that are significantly lacking functional coding variation in non-ASD samples and are enriched for de novo LoF mutations identified in ASD cases. 2014-08-03 2014-09 /pmc/articles/PMC4222185/ /pubmed/25086666 http://dx.doi.org/10.1038/ng.3050 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Samocha, Kaitlin E.
Robinson, Elise B.
Sanders, Stephan J.
Stevens, Christine
Sabo, Aniko
McGrath, Lauren M.
Kosmicki, Jack A.
Rehnström, Karola
Mallick, Swapan
Kirby, Andrew
Wall, Dennis P.
MacArthur, Daniel G.
Gabriel, Stacey B.
dePristo, Mark
Purcell, Shaun M.
Palotie, Aarno
Boerwinkle, Eric
Buxbaum, Joseph D.
Cook, Edwin H.
Gibbs, Richard A.
Schellenberg, Gerard D.
Sutcliffe, James S.
Devlin, Bernie
Roeder, Kathryn
Neale, Benjamin M.
Daly, Mark J.
spellingShingle Samocha, Kaitlin E.
Robinson, Elise B.
Sanders, Stephan J.
Stevens, Christine
Sabo, Aniko
McGrath, Lauren M.
Kosmicki, Jack A.
Rehnström, Karola
Mallick, Swapan
Kirby, Andrew
Wall, Dennis P.
MacArthur, Daniel G.
Gabriel, Stacey B.
dePristo, Mark
Purcell, Shaun M.
Palotie, Aarno
Boerwinkle, Eric
Buxbaum, Joseph D.
Cook, Edwin H.
Gibbs, Richard A.
Schellenberg, Gerard D.
Sutcliffe, James S.
Devlin, Bernie
Roeder, Kathryn
Neale, Benjamin M.
Daly, Mark J.
A framework for the interpretation of de novo mutation in human disease
author_facet Samocha, Kaitlin E.
Robinson, Elise B.
Sanders, Stephan J.
Stevens, Christine
Sabo, Aniko
McGrath, Lauren M.
Kosmicki, Jack A.
Rehnström, Karola
Mallick, Swapan
Kirby, Andrew
Wall, Dennis P.
MacArthur, Daniel G.
Gabriel, Stacey B.
dePristo, Mark
Purcell, Shaun M.
Palotie, Aarno
Boerwinkle, Eric
Buxbaum, Joseph D.
Cook, Edwin H.
Gibbs, Richard A.
Schellenberg, Gerard D.
Sutcliffe, James S.
Devlin, Bernie
Roeder, Kathryn
Neale, Benjamin M.
Daly, Mark J.
author_sort Samocha, Kaitlin E.
title A framework for the interpretation of de novo mutation in human disease
title_short A framework for the interpretation of de novo mutation in human disease
title_full A framework for the interpretation of de novo mutation in human disease
title_fullStr A framework for the interpretation of de novo mutation in human disease
title_full_unstemmed A framework for the interpretation of de novo mutation in human disease
title_sort framework for the interpretation of de novo mutation in human disease
description Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. We provide a statistical framework for the analysis of DNM excesses per gene and gene set by calibrating a model of de novo mutation. We applied this framework to DNMs collected from 1,078 ASD trios and – while affirming a significant role for loss-of-function (LoF) mutations – found no excess of de novo LoF mutations in cases with IQ above 100, suggesting that the role of DNMs in ASD may reside in fundamental neurodevelopmental processes. We also used our model to identify ~1,000 genes that are significantly lacking functional coding variation in non-ASD samples and are enriched for de novo LoF mutations identified in ASD cases.
publishDate 2014
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222185/
_version_ 1613152948473298944