Nonlinearities distribution Laplace transform-homotopy perturbation method

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with n...

Full description

Bibliographic Details
Main Authors: Filobello-Nino, Uriel, Vazquez-Leal, Hector, Benhammouda, Brahim, Hernandez-Martinez, Luis, Hoyos-Reyes, Claudio, Perez-Sesma, Jose Antonio Agustin, Jimenez-Fernandez, Victor Manuel, Pereyra-Diaz, Domitilo, Marin-Hernandez, Antonio, Diaz-Sanchez, Alejandro, Huerta-Chua, Jesus, Cervantes-Perez, Juan
Format: Online
Language:English
Published: Springer International Publishing 2014
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203791/
id pubmed-4203791
recordtype oai_dc
spelling pubmed-42037912014-11-12 Nonlinearities distribution Laplace transform-homotopy perturbation method Filobello-Nino, Uriel Vazquez-Leal, Hector Benhammouda, Brahim Hernandez-Martinez, Luis Hoyos-Reyes, Claudio Perez-Sesma, Jose Antonio Agustin Jimenez-Fernandez, Victor Manuel Pereyra-Diaz, Domitilo Marin-Hernandez, Antonio Diaz-Sanchez, Alejandro Huerta-Chua, Jesus Cervantes-Perez, Juan Research This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method. Springer International Publishing 2014-10-09 /pmc/articles/PMC4203791/ /pubmed/25392771 http://dx.doi.org/10.1186/2193-1801-3-594 Text en © Filobello-Nino et al.; licensee Springer. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
repository_type Open Access Journal
institution_category Foreign Institution
institution US National Center for Biotechnology Information
building NCBI PubMed
collection Online Access
language English
format Online
author Filobello-Nino, Uriel
Vazquez-Leal, Hector
Benhammouda, Brahim
Hernandez-Martinez, Luis
Hoyos-Reyes, Claudio
Perez-Sesma, Jose Antonio Agustin
Jimenez-Fernandez, Victor Manuel
Pereyra-Diaz, Domitilo
Marin-Hernandez, Antonio
Diaz-Sanchez, Alejandro
Huerta-Chua, Jesus
Cervantes-Perez, Juan
spellingShingle Filobello-Nino, Uriel
Vazquez-Leal, Hector
Benhammouda, Brahim
Hernandez-Martinez, Luis
Hoyos-Reyes, Claudio
Perez-Sesma, Jose Antonio Agustin
Jimenez-Fernandez, Victor Manuel
Pereyra-Diaz, Domitilo
Marin-Hernandez, Antonio
Diaz-Sanchez, Alejandro
Huerta-Chua, Jesus
Cervantes-Perez, Juan
Nonlinearities distribution Laplace transform-homotopy perturbation method
author_facet Filobello-Nino, Uriel
Vazquez-Leal, Hector
Benhammouda, Brahim
Hernandez-Martinez, Luis
Hoyos-Reyes, Claudio
Perez-Sesma, Jose Antonio Agustin
Jimenez-Fernandez, Victor Manuel
Pereyra-Diaz, Domitilo
Marin-Hernandez, Antonio
Diaz-Sanchez, Alejandro
Huerta-Chua, Jesus
Cervantes-Perez, Juan
author_sort Filobello-Nino, Uriel
title Nonlinearities distribution Laplace transform-homotopy perturbation method
title_short Nonlinearities distribution Laplace transform-homotopy perturbation method
title_full Nonlinearities distribution Laplace transform-homotopy perturbation method
title_fullStr Nonlinearities distribution Laplace transform-homotopy perturbation method
title_full_unstemmed Nonlinearities distribution Laplace transform-homotopy perturbation method
title_sort nonlinearities distribution laplace transform-homotopy perturbation method
description This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.
publisher Springer International Publishing
publishDate 2014
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203791/
_version_ 1613146808312135680