Nonlinearities distribution Laplace transform-homotopy perturbation method
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with n...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Springer International Publishing
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203791/ |
id |
pubmed-4203791 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-42037912014-11-12 Nonlinearities distribution Laplace transform-homotopy perturbation method Filobello-Nino, Uriel Vazquez-Leal, Hector Benhammouda, Brahim Hernandez-Martinez, Luis Hoyos-Reyes, Claudio Perez-Sesma, Jose Antonio Agustin Jimenez-Fernandez, Victor Manuel Pereyra-Diaz, Domitilo Marin-Hernandez, Antonio Diaz-Sanchez, Alejandro Huerta-Chua, Jesus Cervantes-Perez, Juan Research This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method. Springer International Publishing 2014-10-09 /pmc/articles/PMC4203791/ /pubmed/25392771 http://dx.doi.org/10.1186/2193-1801-3-594 Text en © Filobello-Nino et al.; licensee Springer. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Filobello-Nino, Uriel Vazquez-Leal, Hector Benhammouda, Brahim Hernandez-Martinez, Luis Hoyos-Reyes, Claudio Perez-Sesma, Jose Antonio Agustin Jimenez-Fernandez, Victor Manuel Pereyra-Diaz, Domitilo Marin-Hernandez, Antonio Diaz-Sanchez, Alejandro Huerta-Chua, Jesus Cervantes-Perez, Juan |
spellingShingle |
Filobello-Nino, Uriel Vazquez-Leal, Hector Benhammouda, Brahim Hernandez-Martinez, Luis Hoyos-Reyes, Claudio Perez-Sesma, Jose Antonio Agustin Jimenez-Fernandez, Victor Manuel Pereyra-Diaz, Domitilo Marin-Hernandez, Antonio Diaz-Sanchez, Alejandro Huerta-Chua, Jesus Cervantes-Perez, Juan Nonlinearities distribution Laplace transform-homotopy perturbation method |
author_facet |
Filobello-Nino, Uriel Vazquez-Leal, Hector Benhammouda, Brahim Hernandez-Martinez, Luis Hoyos-Reyes, Claudio Perez-Sesma, Jose Antonio Agustin Jimenez-Fernandez, Victor Manuel Pereyra-Diaz, Domitilo Marin-Hernandez, Antonio Diaz-Sanchez, Alejandro Huerta-Chua, Jesus Cervantes-Perez, Juan |
author_sort |
Filobello-Nino, Uriel |
title |
Nonlinearities distribution Laplace transform-homotopy perturbation method |
title_short |
Nonlinearities distribution Laplace transform-homotopy perturbation method |
title_full |
Nonlinearities distribution Laplace transform-homotopy perturbation method |
title_fullStr |
Nonlinearities distribution Laplace transform-homotopy perturbation method |
title_full_unstemmed |
Nonlinearities distribution Laplace transform-homotopy perturbation method |
title_sort |
nonlinearities distribution laplace transform-homotopy perturbation method |
description |
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method. |
publisher |
Springer International Publishing |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203791/ |
_version_ |
1613146808312135680 |