Assimilative and non-assimilative color spreading in the watercolor configuration
A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e...
Main Authors: | , |
---|---|
Format: | Online |
Language: | English |
Published: |
Frontiers Media S.A.
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168700/ |
id |
pubmed-4168700 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-41687002014-10-03 Assimilative and non-assimilative color spreading in the watercolor configuration Kimura, Eiji Kuroki, Mikako Neuroscience A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading. Frontiers Media S.A. 2014-09-19 /pmc/articles/PMC4168700/ /pubmed/25285074 http://dx.doi.org/10.3389/fnhum.2014.00722 Text en Copyright © 2014 Kimura and Kuroki. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Kimura, Eiji Kuroki, Mikako |
spellingShingle |
Kimura, Eiji Kuroki, Mikako Assimilative and non-assimilative color spreading in the watercolor configuration |
author_facet |
Kimura, Eiji Kuroki, Mikako |
author_sort |
Kimura, Eiji |
title |
Assimilative and non-assimilative color spreading in the watercolor configuration |
title_short |
Assimilative and non-assimilative color spreading in the watercolor configuration |
title_full |
Assimilative and non-assimilative color spreading in the watercolor configuration |
title_fullStr |
Assimilative and non-assimilative color spreading in the watercolor configuration |
title_full_unstemmed |
Assimilative and non-assimilative color spreading in the watercolor configuration |
title_sort |
assimilative and non-assimilative color spreading in the watercolor configuration |
description |
A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading. |
publisher |
Frontiers Media S.A. |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168700/ |
_version_ |
1613135363773038592 |