The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems
We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion...
Main Authors: | , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Oxford University Press
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117751/ |
id |
pubmed-4117751 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-41177512014-08-15 The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems Oberstaller, Jenna Pumpalova, Yoanna Schieler, Ariel Llinás, Manuel Kissinger, Jessica C. Gene regulation, Chromatin and Epigenetics We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5′-TGCAT-3′, 5′-CACACA-3′ and G-box motifs (5′-G[T/C]GGGG-3′). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination. Oxford University Press 2014-09-01 2014-07-17 /pmc/articles/PMC4117751/ /pubmed/24957599 http://dx.doi.org/10.1093/nar/gku500 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Oberstaller, Jenna Pumpalova, Yoanna Schieler, Ariel Llinás, Manuel Kissinger, Jessica C. |
spellingShingle |
Oberstaller, Jenna Pumpalova, Yoanna Schieler, Ariel Llinás, Manuel Kissinger, Jessica C. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
author_facet |
Oberstaller, Jenna Pumpalova, Yoanna Schieler, Ariel Llinás, Manuel Kissinger, Jessica C. |
author_sort |
Oberstaller, Jenna |
title |
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
title_short |
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
title_full |
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
title_fullStr |
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
title_full_unstemmed |
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems |
title_sort |
cryptosporidium parvum apiap2 gene family: insights into the evolution of apicomplexan ap2 regulatory systems |
description |
We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5′-TGCAT-3′, 5′-CACACA-3′ and G-box motifs (5′-G[T/C]GGGG-3′). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination. |
publisher |
Oxford University Press |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117751/ |
_version_ |
1613119630782496768 |