Carbon-based Composite Electrodes: Preparation, Characterization and Application in Electroanalysis

Electrodes based on carbon, i.e., expanded graphite (20%, wt.)-epoxy composite (20EG-Epoxy) and expanded graphite (20%, wt.)-polystyrene composite (20EG-PS) have been prepared, characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV), and tested as anodic sensors. The elect...

Full description

Bibliographic Details
Main Authors: Corb, Ioana, Manea, Florica, Radovan, Ciprian, Pop, Aniela, Burtica, Georgeta, Malchev, Plamen, Picken, Stephen, Schoonman, Joop
Format: Online
Language:English
Published: Molecular Diversity Preservation International (MDPI) 2007
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965232/
Description
Summary:Electrodes based on carbon, i.e., expanded graphite (20%, wt.)-epoxy composite (20EG-Epoxy) and expanded graphite (20%, wt.)-polystyrene composite (20EG-PS) have been prepared, characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV), and tested as anodic sensors. The electrodes exhibited good mechanical resistance and low electrical resistances. Scan rate dependent cyclic voltammetry responses at 20EG-Epoxy and 20EG-PS composite electrodes, which were exemplified for thiourea (TU), a toxic sulphur organic compound selected as testing target analyte in 0.1 M Na2SO4 supporting electrolyte, were investigated. The obtained voltammetric data were in accordance with those for a random array of microelectrodes. The voltammetric and chronoamperometric detection results of TU in tap water samples, without a supplementary addition of supporting electrolyte, at 20EG-Epoxy electrode proved its use for direct analysis of environmental samples.