The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain
BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ∼40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent...
Main Authors: | , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942486/ |
id |
pubmed-3942486 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-39424862014-03-06 The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain Evans, Sian E. Goult, Benjamin T. Fairall, Louise Jamieson, Andrew G. Ko Ferrigno, Paul Ford, Robert Schwabe, John W. R. Wagner, Simon D. Research Article BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ∼40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor. Public Library of Science 2014-03-04 /pmc/articles/PMC3942486/ /pubmed/24595451 http://dx.doi.org/10.1371/journal.pone.0090889 Text en © 2014 Evans et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Evans, Sian E. Goult, Benjamin T. Fairall, Louise Jamieson, Andrew G. Ko Ferrigno, Paul Ford, Robert Schwabe, John W. R. Wagner, Simon D. |
spellingShingle |
Evans, Sian E. Goult, Benjamin T. Fairall, Louise Jamieson, Andrew G. Ko Ferrigno, Paul Ford, Robert Schwabe, John W. R. Wagner, Simon D. The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
author_facet |
Evans, Sian E. Goult, Benjamin T. Fairall, Louise Jamieson, Andrew G. Ko Ferrigno, Paul Ford, Robert Schwabe, John W. R. Wagner, Simon D. |
author_sort |
Evans, Sian E. |
title |
The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
title_short |
The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
title_full |
The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
title_fullStr |
The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
title_full_unstemmed |
The Ansamycin Antibiotic, Rifamycin SV, Inhibits BCL6 Transcriptional Repression and Forms a Complex with the BCL6-BTB/POZ Domain |
title_sort |
ansamycin antibiotic, rifamycin sv, inhibits bcl6 transcriptional repression and forms a complex with the bcl6-btb/poz domain |
description |
BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ∼40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor. |
publisher |
Public Library of Science |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942486/ |
_version_ |
1612064355990372352 |