Summary: | Seventy percent of breast cancers express estrogen receptor (ER) and most of these are sensitive to ER inhibition. However, many such tumors become refractory to inhibition of estrogen action in the metastatic setting for unknown reasons. We conducted a comprehensive genetic analysis of two independent cohorts of metastatic ER+ breast tumors and identified mutations in the ligand binding domain (LBD) of ESR1 in 14/80 cases. These included highly recurrent mutations p.Tyr537Ser/Asn and p.Asp538Gly. Molecular dynamics simulations suggest the Tyr537Ser and Asp538Gly structures lead to hydrogen bonding of the mutant amino acid with Asp351, thus favoring the receptor’s agonist conformation. Consistent with this model, mutant receptors drive ER-dependent transcription and proliferation in the absence of hormone and reduce the efficacy of ER antagonists. These data implicate LBD mutant forms of ER in mediating clinical resistance to hormonal therapy and suggest that more potent ER antagonists may have significant therapeutic benefit.
|