Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers
Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising O...
Main Authors: | , , , , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Public Library of Science
2014
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897700/ |
id |
pubmed-3897700 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-38977002014-01-24 Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers Zhang, Yu Cai, Xiyun Xiong, Weina Jiang, Hao Zhao, Haitong Yang, Xianhai Li, Chao Fu, Zhiqiang Chen, Jingwen Research Article Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2 +, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. Public Library of Science 2014-01-21 /pmc/articles/PMC3897700/ /pubmed/24465975 http://dx.doi.org/10.1371/journal.pone.0086228 Text en © 2014 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Zhang, Yu Cai, Xiyun Xiong, Weina Jiang, Hao Zhao, Haitong Yang, Xianhai Li, Chao Fu, Zhiqiang Chen, Jingwen |
spellingShingle |
Zhang, Yu Cai, Xiyun Xiong, Weina Jiang, Hao Zhao, Haitong Yang, Xianhai Li, Chao Fu, Zhiqiang Chen, Jingwen Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
author_facet |
Zhang, Yu Cai, Xiyun Xiong, Weina Jiang, Hao Zhao, Haitong Yang, Xianhai Li, Chao Fu, Zhiqiang Chen, Jingwen |
author_sort |
Zhang, Yu |
title |
Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
title_short |
Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
title_full |
Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
title_fullStr |
Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
title_full_unstemmed |
Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers |
title_sort |
molecular insights into the ph-dependent adsorption and removal of ionizable antibiotic oxytetracycline by adsorbent cyclodextrin polymers |
description |
Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2
+, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. |
publisher |
Public Library of Science |
publishDate |
2014 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897700/ |
_version_ |
1612049614520713216 |