Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
Some bacterial species can colonize humans and plants. It is almost impossible to prevent the contact of clinically pathogenic bacteria with food crops, and if they can persist there, they can reenter the human food chain and cause disease. On the leaf surface, microorganisms are exposed to a number...
Main Authors: | , , , , , |
---|---|
Format: | Online |
Language: | English |
Published: |
Hindawi Publishing Corporation
2013
|
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809605/ |
id |
pubmed-3809605 |
---|---|
recordtype |
oai_dc |
spelling |
pubmed-38096052013-11-11 Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae Nicolau Korres, Adriana Marcia Aquije, Gloria Maria de Farias V. Buss, David S. Ventura, Jose Aires Fernandes, Patricia Machado Bueno Fernandes, Antonio Alberto Ribeiro Research Article Some bacterial species can colonize humans and plants. It is almost impossible to prevent the contact of clinically pathogenic bacteria with food crops, and if they can persist there, they can reenter the human food chain and cause disease. On the leaf surface, microorganisms are exposed to a number of stress factors. It is unclear how they survive in such different environments. By increasing adhesion to diverse substrates, minimizing environmental differences, and providing protection against defence mechanisms, biofilms could provide part of the answer. Klebsiella pneumoniae subsp. pneumoniae is clinically important and also associated with fruit diseases, such as “pineapple fruit collapse.” We aimed to characterize biofilm formation and adhesion mechanisms of this species isolated from pineapple in comparison with a clinical isolate. No differences were found between the two isolates quantitatively or qualitatively. Both tested positive for capsule formation and were hydrophobic, but neither produced adherence fibres, which might account for their relatively weak adhesion compared to the positive control Staphylococcus epidermidis ATCC 35984. Both produced biofilms on glass and polystyrene, more consistently at 40°C than 35°C, confirmed by atomic force and high-vacuum scanning electron microscopy. Biofilm formation was maintained in an acidic environment, which may be relevant phytopathologically. Hindawi Publishing Corporation 2013-10-10 /pmc/articles/PMC3809605/ /pubmed/24222755 http://dx.doi.org/10.1155/2013/925375 Text en Copyright © 2013 Adriana Marcia Nicolau Korres et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
repository_type |
Open Access Journal |
institution_category |
Foreign Institution |
institution |
US National Center for Biotechnology Information |
building |
NCBI PubMed |
collection |
Online Access |
language |
English |
format |
Online |
author |
Nicolau Korres, Adriana Marcia Aquije, Gloria Maria de Farias V. Buss, David S. Ventura, Jose Aires Fernandes, Patricia Machado Bueno Fernandes, Antonio Alberto Ribeiro |
spellingShingle |
Nicolau Korres, Adriana Marcia Aquije, Gloria Maria de Farias V. Buss, David S. Ventura, Jose Aires Fernandes, Patricia Machado Bueno Fernandes, Antonio Alberto Ribeiro Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae |
author_facet |
Nicolau Korres, Adriana Marcia Aquije, Gloria Maria de Farias V. Buss, David S. Ventura, Jose Aires Fernandes, Patricia Machado Bueno Fernandes, Antonio Alberto Ribeiro |
author_sort |
Nicolau Korres, Adriana Marcia |
title |
Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
|
title_short |
Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
|
title_full |
Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
|
title_fullStr |
Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
|
title_full_unstemmed |
Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae
|
title_sort |
comparison of biofilm and attachment mechanisms of a phytopathological and clinical isolate of klebsiella pneumoniae subsp. pneumoniae |
description |
Some bacterial species can colonize humans and plants. It is almost impossible to prevent the contact of clinically pathogenic bacteria with food crops, and if they can persist there, they can reenter the human food chain and cause disease. On the leaf surface, microorganisms are exposed to a number of stress factors. It is unclear how they survive in such different environments. By increasing adhesion to diverse substrates, minimizing environmental differences, and providing protection against defence mechanisms, biofilms could provide part of the answer. Klebsiella pneumoniae subsp. pneumoniae is clinically important and also associated with fruit diseases, such as “pineapple fruit collapse.” We aimed to characterize biofilm formation and adhesion mechanisms of this species isolated from pineapple in comparison with a clinical isolate. No differences were found between the two isolates quantitatively or qualitatively. Both tested positive for capsule formation and were hydrophobic, but neither produced adherence fibres, which might account for their relatively weak adhesion compared to the positive control Staphylococcus epidermidis ATCC 35984. Both produced biofilms on glass and polystyrene, more consistently at 40°C than 35°C, confirmed by atomic force and high-vacuum scanning electron microscopy. Biofilm formation was maintained in an acidic environment, which may be relevant phytopathologically. |
publisher |
Hindawi Publishing Corporation |
publishDate |
2013 |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809605/ |
_version_ |
1612021078427697152 |