Dorsomorphin Promotes Survival and Germline Competence of Zebrafish Spermatogonial Stem Cells in Culture

Zebrafish spermatogonial cell cultures were established from Tg(piwil1:neo);Tg(piwil1:DsRed) transgenic fish using a zebrafish ovarian feeder cell line (OFC3) that was engineered to express zebrafish Lif, Fgf2 and Gdnf. Primary cultures, initiated from testes, were treated with G418 to eliminate the...

Full description

Bibliographic Details
Main Authors: Wong, Ten-Tsao, Collodi, Paul
Format: Online
Language:English
Published: Public Library of Science 2013
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731312/
Description
Summary:Zebrafish spermatogonial cell cultures were established from Tg(piwil1:neo);Tg(piwil1:DsRed) transgenic fish using a zebrafish ovarian feeder cell line (OFC3) that was engineered to express zebrafish Lif, Fgf2 and Gdnf. Primary cultures, initiated from testes, were treated with G418 to eliminate the somatic cells and select for the piwil1:neo expressing spermatogonia. Addition of dorsomorphin, a Bmp type I receptor inhibitor, prolonged spermatogonial stem cell (SSC) survival in culture and enhanced germline transmission of the SSCs following transplantation into recipient larvae. In contrast, dorsomorphin inhibited the growth and survival of zebrafish female germline stem cells (FGSCs) in culture. In the presence of dorsomorphin, the spermatogonia continued to express the germ-cell markers dazl, dnd, nanos3, vasa and piwil1 and the spermatogonial markers plzf and sox17 for at least six weeks in culture. Transplantation experiments revealed that 6 week-old spermatogonial cell cultures maintained in the presence of dorsomorphin were able to successfully colonize the gonad in 18% of recipient larvae and produce functional gametes in the resulting adult chimeric fish. Germline transmission was not successful when the spermatogonia were cultured 6 weeks in the absence of dorsomorphin before transplantation. The results indicate that Bmp signaling is detrimental to SSCs but required for the survival of zebrafish FGSCs in culture. Manipulation of Bmp signaling could provide a strategy to optimize culture conditions of germline stem cells from other species.